Abstract
1. The interaction of intact Ehrlich ascites-tumour cells with Ca2+ at 37 degrees C consists of Ca2+ uptake followed by efflux from the cells. Under optimum conditions, two or three cycles of uptake and efflux are observed in the first 15 min after Ca2+ addition. 2. The respiratory substrates malate, succinate and ascorbate plus p-phenylenediamine support Ca2+ uptake. Ca2+ uptake at 37 degrees C is sensitive to the respiratory inhibitors rotenone and antimycin A when appropriate substrates are present. Ca2+ uptake and retention are inhibited by the uncoupler S-13. 3. Increasing extracellular Pi (12 to 30 mM) stimulates uncoupler-sensitive Ca2+ uptake, which reaches a maximum extent of 15 nmol/mg of protein when supported by succinate respiration. Ca2+ efflux is partially inhibited at 30 mM-Pi. 4. Optimum Ca2+ uptake occurs in the presence of succinate and Pi, suggesting that availability of substrate and Pi are rate-limiting. K. Ca2+ uptake occurs at 4 degrees C and is sensitive to uncouplers and oligomycin. Ca2+ efflux at this temperature is minimal. These data are consistent with a model in which passive diffusion of Ca2+ through the plasma membrane is followed by active uptake by the mitochondria. Ca2+ uptake is supported by substrates entering respiration at all three energy-coupling sites. Ca2+ efflux appears to be an active process with a high temperature coefficient.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borle A. B. Calcium metabolism at the cellular level. Fed Proc. 1973 Sep;32(9):1944–1950. [PubMed] [Google Scholar]
- Borle A. B. Kinetic analysis of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells. J Membr Biol. 1972;10(1):45–66. doi: 10.1007/BF01867847. [DOI] [PubMed] [Google Scholar]
- Bygrave F. L. The ionic environment and metabolic control. Nature. 1967 May 13;214(5089):667–671. doi: 10.1038/214667a0. [DOI] [PubMed] [Google Scholar]
- CHANCE B., HOLLUNGER G. The interaction of energy and electron transfer reactions in mitochondria. I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J Biol Chem. 1961 May;236:1534–1543. [PubMed] [Google Scholar]
- CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
- Cittadini A., Scarpa A., Chance B. Calcium transport in intact Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973 Jan 2;291(1):246–259. doi: 10.1016/0005-2736(73)90416-1. [DOI] [PubMed] [Google Scholar]
- Cittadini A., Scarpa A., Chance B. Kinetic evidence for Ca(2+) uptake by intact Ehrlich ascites tumor cells. FEBS Lett. 1971 Oct 15;18(1):98–102. doi: 10.1016/0014-5793(71)80417-9. [DOI] [PubMed] [Google Scholar]
- DRAHOTA Z., CARAFOLI E., ROSSI C. S., GAMBLE R. L., LEHNINGER A. L. THE STEADY STATE MAINTENANCE OF ACCUMULATED CA++ IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2712–2720. [PubMed] [Google Scholar]
- Hines R. N., Wenner C. E. The role of P(i) in glycolytic inhibition of calcium ion uptake by ELD ascites tumor cells. Biochim Biophys Acta. 1977 Mar 1;465(2):391–399. doi: 10.1016/0005-2736(77)90088-8. [DOI] [PubMed] [Google Scholar]
- Landry Y., Lehninger A. L. Transport of calcium ions by Ehrlich ascites-tumour cells. Biochem J. 1976 Aug 15;158(2):427–438. doi: 10.1042/bj1580427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1520–1524. doi: 10.1073/pnas.71.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazumder A., Wenner C. E. Phosphate transport and its relationship to cation movements in Ehrlich Lettré ascites tumor cells. Arch Biochem Biophys. 1977 Mar;179(2):409–414. doi: 10.1016/0003-9861(77)90128-x. [DOI] [PubMed] [Google Scholar]
- McCoy G. D., Resch R. C., Racker E. Characterization of dextran sulfate-treated ascites tumor cells and their repair by ascites fluid. Cancer Res. 1976 Sep;36(9 PT1):3339–3345. [PubMed] [Google Scholar]
- Mela L., Chance B. Spectrophotometric measurements of the kinetics of Ca2+ and Mn2+ accumulation in mitochondria. Biochemistry. 1968 Nov;7(11):4059–4063. doi: 10.1021/bi00851a038. [DOI] [PubMed] [Google Scholar]
- NIRENBERG M. W. A biochemical characteristic of ascites tumor cells. J Biol Chem. 1959 Dec;234:3088–3093. [PubMed] [Google Scholar]
- Rasmussen H., Chance B., Ogata E. A mechanism for the reactions of calcium with mitochondria. Proc Natl Acad Sci U S A. 1965 May;53(5):1069–1076. doi: 10.1073/pnas.53.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorne R. F., Bygrave F. L. Interaction of calcium with mitochondria isolated from Ehrlich ascites tumour cells. Biochem Biophys Res Commun. 1973 Jan 23;50(2):294–299. doi: 10.1016/0006-291x(73)90839-5. [DOI] [PubMed] [Google Scholar]
- WEINHOUSE S. Oxidative metabolism of neoplastic tissues. Adv Cancer Res. 1955;3:269–325. doi: 10.1016/s0065-230x(08)60922-7. [DOI] [PubMed] [Google Scholar]
- WENNER C. E., HACKNEY J. H., MOLITERNO F. The hexose monophosphate shunt in glucose catabolism in ascites tumor cells. Cancer Res. 1958 Oct;18(9):1105–1114. [PubMed] [Google Scholar]