Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Mar 15;170(3):537–544. doi: 10.1042/bj1700537

Calcium-ion transport by intact Ehrlich ascites-tumour cells. Role of respiratory substrates, Pi and temperature.

R R Charlton, C E Wenner
PMCID: PMC1183929  PMID: 646799

Abstract

1. The interaction of intact Ehrlich ascites-tumour cells with Ca2+ at 37 degrees C consists of Ca2+ uptake followed by efflux from the cells. Under optimum conditions, two or three cycles of uptake and efflux are observed in the first 15 min after Ca2+ addition. 2. The respiratory substrates malate, succinate and ascorbate plus p-phenylenediamine support Ca2+ uptake. Ca2+ uptake at 37 degrees C is sensitive to the respiratory inhibitors rotenone and antimycin A when appropriate substrates are present. Ca2+ uptake and retention are inhibited by the uncoupler S-13. 3. Increasing extracellular Pi (12 to 30 mM) stimulates uncoupler-sensitive Ca2+ uptake, which reaches a maximum extent of 15 nmol/mg of protein when supported by succinate respiration. Ca2+ efflux is partially inhibited at 30 mM-Pi. 4. Optimum Ca2+ uptake occurs in the presence of succinate and Pi, suggesting that availability of substrate and Pi are rate-limiting. K. Ca2+ uptake occurs at 4 degrees C and is sensitive to uncouplers and oligomycin. Ca2+ efflux at this temperature is minimal. These data are consistent with a model in which passive diffusion of Ca2+ through the plasma membrane is followed by active uptake by the mitochondria. Ca2+ uptake is supported by substrates entering respiration at all three energy-coupling sites. Ca2+ efflux appears to be an active process with a high temperature coefficient.

Full text

PDF
537

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borle A. B. Calcium metabolism at the cellular level. Fed Proc. 1973 Sep;32(9):1944–1950. [PubMed] [Google Scholar]
  2. Borle A. B. Kinetic analysis of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells. J Membr Biol. 1972;10(1):45–66. doi: 10.1007/BF01867847. [DOI] [PubMed] [Google Scholar]
  3. Bygrave F. L. The ionic environment and metabolic control. Nature. 1967 May 13;214(5089):667–671. doi: 10.1038/214667a0. [DOI] [PubMed] [Google Scholar]
  4. CHANCE B., HOLLUNGER G. The interaction of energy and electron transfer reactions in mitochondria. I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J Biol Chem. 1961 May;236:1534–1543. [PubMed] [Google Scholar]
  5. CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
  6. Cittadini A., Scarpa A., Chance B. Calcium transport in intact Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973 Jan 2;291(1):246–259. doi: 10.1016/0005-2736(73)90416-1. [DOI] [PubMed] [Google Scholar]
  7. Cittadini A., Scarpa A., Chance B. Kinetic evidence for Ca(2+) uptake by intact Ehrlich ascites tumor cells. FEBS Lett. 1971 Oct 15;18(1):98–102. doi: 10.1016/0014-5793(71)80417-9. [DOI] [PubMed] [Google Scholar]
  8. DRAHOTA Z., CARAFOLI E., ROSSI C. S., GAMBLE R. L., LEHNINGER A. L. THE STEADY STATE MAINTENANCE OF ACCUMULATED CA++ IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2712–2720. [PubMed] [Google Scholar]
  9. Hines R. N., Wenner C. E. The role of P(i) in glycolytic inhibition of calcium ion uptake by ELD ascites tumor cells. Biochim Biophys Acta. 1977 Mar 1;465(2):391–399. doi: 10.1016/0005-2736(77)90088-8. [DOI] [PubMed] [Google Scholar]
  10. Landry Y., Lehninger A. L. Transport of calcium ions by Ehrlich ascites-tumour cells. Biochem J. 1976 Aug 15;158(2):427–438. doi: 10.1042/bj1580427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  12. Lehninger A. L. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1520–1524. doi: 10.1073/pnas.71.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mazumder A., Wenner C. E. Phosphate transport and its relationship to cation movements in Ehrlich Lettré ascites tumor cells. Arch Biochem Biophys. 1977 Mar;179(2):409–414. doi: 10.1016/0003-9861(77)90128-x. [DOI] [PubMed] [Google Scholar]
  14. McCoy G. D., Resch R. C., Racker E. Characterization of dextran sulfate-treated ascites tumor cells and their repair by ascites fluid. Cancer Res. 1976 Sep;36(9 PT1):3339–3345. [PubMed] [Google Scholar]
  15. Mela L., Chance B. Spectrophotometric measurements of the kinetics of Ca2+ and Mn2+ accumulation in mitochondria. Biochemistry. 1968 Nov;7(11):4059–4063. doi: 10.1021/bi00851a038. [DOI] [PubMed] [Google Scholar]
  16. NIRENBERG M. W. A biochemical characteristic of ascites tumor cells. J Biol Chem. 1959 Dec;234:3088–3093. [PubMed] [Google Scholar]
  17. Rasmussen H., Chance B., Ogata E. A mechanism for the reactions of calcium with mitochondria. Proc Natl Acad Sci U S A. 1965 May;53(5):1069–1076. doi: 10.1073/pnas.53.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thorne R. F., Bygrave F. L. Interaction of calcium with mitochondria isolated from Ehrlich ascites tumour cells. Biochem Biophys Res Commun. 1973 Jan 23;50(2):294–299. doi: 10.1016/0006-291x(73)90839-5. [DOI] [PubMed] [Google Scholar]
  20. WEINHOUSE S. Oxidative metabolism of neoplastic tissues. Adv Cancer Res. 1955;3:269–325. doi: 10.1016/s0065-230x(08)60922-7. [DOI] [PubMed] [Google Scholar]
  21. WENNER C. E., HACKNEY J. H., MOLITERNO F. The hexose monophosphate shunt in glucose catabolism in ascites tumor cells. Cancer Res. 1958 Oct;18(9):1105–1114. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES