Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 May 1;171(2):375–383. doi: 10.1042/bj1710375

Processing and migration of ribosomal ribonculeic acids in the nucleolus and nucleoplasm of rat liver nuclei.

K P Dudov, M D Dabeva, A A Hadjiolov, B N Todorov
PMCID: PMC1183966  PMID: 656051

Abstract

Kinetic studies on the labelling in vivo with [14C]orotate of rat liver nucleolar and nucleoplasmic pre-rRNA (precursor of rRNA) and rRNA, isolated from detergent-purified nuclei, were carried out. The mathematical methods used for the computer analysis of specific-radioactivity curves are described. Evaluation of the experimental data permitted the selection of the most probable models for the processing of pre-rRNA and the nucleo-cytoplasmic transfer of rRNA. It was shown that considerable flexibility exists in the sequence of endonuclease attacks at critical sites of 45 and 41 S pre-rRNA chains, resulting in the simultaneous occurrence of several processing pathways. However, the phosphodiester bonds involved in the formation of mature 28 and 18 S rRNA appear to be protected until the generation of their immediate pre-rRNA. The turnover rates and half-lives of all pre-rRNA and rRNA pools were determined. The turnover rate of 45 S pre-rRNA corresponds to the formation of 1100 ribosomes/min per nucleus. The model for the nucleolus-nucleoplasm-cytoplasm migration of rRNA includes a 'nucleoplasm' compartment in which the small ribosomal subparticle is in rapid equilibrium with the respective cytoplasmic pool. At equimolar amounts of nuclear 28 and 18 S rRNA this model explains the faster appearance of labelled small ribosomal subparticles in the cytoplasm simultaneous with a lower labelling of nuclear 18 S rRNA as compared with 28 S rRNA.

Full text

PDF
375

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins G. L. Investigation of the effect of data error on the determination of physiological parameters by means of compartmental analysis. Biochem J. 1972 Apr;127(2):437–438. doi: 10.1042/bj1270437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bach M. K., Johnson H. G. The isolation and characterization of a novel microsome fraction from washed and detergent-treated nuclei of HeLa cells by the use of solutions containing deoxyribonucleic acid. Biochemistry. 1967 Jul;6(7):1916–1933. doi: 10.1021/bi00859a007. [DOI] [PubMed] [Google Scholar]
  3. Chaudhuri S., Lieberman I. Time required by the normal and regenerating rat liver cell to make a ribosome. J Mol Biol. 1968 Apr 14;33(1):323–326. doi: 10.1016/0022-2836(68)90299-4. [DOI] [PubMed] [Google Scholar]
  4. Dabeva M. D., Dudov K. P., Hadjiolov A. A., Emanuilov I., Todorov B. N. Intranuclear maturation pathways of rat liver ribosomal ribonucleic acids. Biochem J. 1976 Dec 15;160(3):495–503. doi: 10.1042/bj1600495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dabeva M. D., Dudov K. P., Hadjiolov A. A., Stoykova A. S. Quantitative analysis of rat liver nucleolar and nucleoplasmic ribosomal ribonucleic acids. Biochem J. 1978 May 1;171(2):367–374. doi: 10.1042/bj1710367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dabeva M. D., Petrov P. T., Stoykova A. S., Hadjiolov A. A. Contamination of detergent-purified rat liver nuclei by cytoplasmic ribosomes. Exp Cell Res. 1977 Sep;108(2):467–471. doi: 10.1016/s0014-4827(77)80061-x. [DOI] [PubMed] [Google Scholar]
  7. Dabeva M. D., Todorov B. N., Khadzhiolova A. A. Vnutriiadernoe raspredelenie ribosomnykh RNK iz pecheni krysy. Biokhimiia. 1976 Mar;41(3):458–468. [PubMed] [Google Scholar]
  8. Dudov K. P., Dabeva M. D., Hadjiolov A. A. Simple agar--urea-gel electrophoretic fractionation of high molecular weight ribonucleic acids. Anal Biochem. 1976 Nov;76(50):250–258. doi: 10.1016/0003-2697(76)90283-9. [DOI] [PubMed] [Google Scholar]
  9. Eliceiri G. L. Turnover of ribosomal RNA in liver. Biochim Biophys Acta. 1976 Nov 1;447(4):391–394. doi: 10.1016/0005-2787(76)90076-9. [DOI] [PubMed] [Google Scholar]
  10. Emerson C. P. Regulation of the synthesis and the stability of ribosomal RNA during contact inhibition of growth. Nat New Biol. 1971 Jul 28;232(30):101–106. doi: 10.1038/newbio232101a0. [DOI] [PubMed] [Google Scholar]
  11. GIRARD M., LATHAM H., PENMAN S., DARNELL J. E. ENTRANCE OF NEWLY FORMED MESSENGER RNA AND RIBOSOMES INTO HELA CELL CYTOPLASM. J Mol Biol. 1965 Feb;11:187–201. doi: 10.1016/s0022-2836(65)80050-x. [DOI] [PubMed] [Google Scholar]
  12. Goidl J. A., Canaani D., Boublik M., Weissbach H., Dickerman H. Polyanion-induced release of polyribosomes from HeLa cell nuclei. J Biol Chem. 1975 Dec 10;250(23):9198–9205. [PubMed] [Google Scholar]
  13. Hadjiolov A. A., Milchev G. I. Synthesis and maturation of ribosomal ribonucleic acids in isolated HeLa cell nuclei. A tracer study on the topology of the 45S precursor of ribosomal ribonucleic acids. Biochem J. 1974 Aug;142(2):263–272. doi: 10.1042/bj1420263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hadjiolov A. A., Nikolaev N. Maturation of ribosomal ribonucleic acids and the biogenesis of ribosomes. Prog Biophys Mol Biol. 1976;31(2):95–144. doi: 10.1016/0079-6107(78)90006-8. [DOI] [PubMed] [Google Scholar]
  15. Hadjiolov A. A. Studies on the turnover and messenger activity of rat-liver ribonucleic acids. Biochim Biophys Acta. 1966 Jun 22;119(3):547–556. doi: 10.1016/0005-2787(66)90131-6. [DOI] [PubMed] [Google Scholar]
  16. Hogan B. L., Korner A. The role of ribosomal subunits and 80-S monomers in polysome formation in an ascites tumour cell. Biochim Biophys Acta. 1968 Nov 20;169(1):139–149. doi: 10.1016/0005-2787(68)90015-4. [DOI] [PubMed] [Google Scholar]
  17. Hunt J. A. Ribonucleic acid synthesis in rabbit erythroid cells. Biochem J. 1976 Dec 15;160(3):727–744. doi: 10.1042/bj1600727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Joklik W. K., Becker Y. Studies on the genesis of polyribosomes. I. Origin and significance of the subribosomal particles. J Mol Biol. 1965 Sep;13(2):496–510. doi: 10.1016/s0022-2836(65)80112-7. [DOI] [PubMed] [Google Scholar]
  19. Muramatsu M., Hodnett J. L., Steele W. J., Busch H. Synthesis of 28-S RNA in the nucleolus. Biochim Biophys Acta. 1966 Jul 20;123(1):116–125. doi: 10.1016/0005-2787(66)90164-x. [DOI] [PubMed] [Google Scholar]
  20. Myhill J. Investigation of the effect of data error in the analysis of biological tracer data. Biophys J. 2008 Dec 31;7(6):903–911. doi: 10.1016/S0006-3495(67)86628-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Penman S. RNA metabolism in the HeLa cell nucleus. J Mol Biol. 1966 May;17(1):117–130. doi: 10.1016/s0022-2836(66)80098-0. [DOI] [PubMed] [Google Scholar]
  22. Penman S., Smith I., Holtzman E. Ribosomal RNA synthesis and processing in a particulate site in the HeLa cell nucleus. Science. 1966 Nov 11;154(3750):786–789. doi: 10.1126/science.154.3750.786. [DOI] [PubMed] [Google Scholar]
  23. Perry R. P. Processing of RNA. Annu Rev Biochem. 1976;45:605–629. doi: 10.1146/annurev.bi.45.070176.003133. [DOI] [PubMed] [Google Scholar]
  24. Purtell M. J., Anthony D. D. Changes in ribosomal RNA processing paths in resting and phytohemagglutinin-stimulated guinea pig lymphocytes. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3315–3319. doi: 10.1073/pnas.72.9.3315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. REINER J. M. The study of metabolic turnover rates by means of isotopic tracers. II. Turnover in a simple reaction system. Arch Biochem Biophys. 1953 Sep;46(1):80–99. doi: 10.1016/0003-9861(53)90171-4. [DOI] [PubMed] [Google Scholar]
  26. Reiner J. M. Recent advances in molecular pathology. Isotopic analysis of metabolic systems. I. Exp Mol Pathol. 1974 Feb;20(1):78–108. doi: 10.1016/0014-4800(74)90045-8. [DOI] [PubMed] [Google Scholar]
  27. Smith S. J., Adams H. R., Smetana K., Busch H. Isolation of the outer layer of the nuclear envelope. Composition of the RNA. Exp Cell Res. 1969 May;55(2):185–197. doi: 10.1016/0014-4827(69)90480-7. [DOI] [PubMed] [Google Scholar]
  28. Toniolo D., Basilico C. Processing of ribosomal RNA in a temperature sensitive mutant of BHK cells. Biochim Biophys Acta. 1976 Apr 2;425(4):409–418. doi: 10.1016/0005-2787(76)90005-8. [DOI] [PubMed] [Google Scholar]
  29. Tsurugi K., Morita T., Ogata K. Mode of degradation of ribosomes in regenerating rat liver in vivo. Eur J Biochem. 1974 Jun 1;45(1):119–126. doi: 10.1111/j.1432-1033.1974.tb03536.x. [DOI] [PubMed] [Google Scholar]
  30. Vaughan M. H., Warner J. R., Darnell J. E. Ribosomal precursor particles in the HeLa cell nucleus. J Mol Biol. 1967 Apr 28;25(2):235–251. doi: 10.1016/0022-2836(67)90140-4. [DOI] [PubMed] [Google Scholar]
  31. Weinberg R. A., Loening U., Willems M., Penman S. Acrylamide gel electrophoresis of HeLa cell nucleolar RNA. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1088–1095. doi: 10.1073/pnas.58.3.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weinberg R. A., Penman S. Processing of 45 s nucleolar RNA. J Mol Biol. 1970 Jan 28;47(2):169–178. doi: 10.1016/0022-2836(70)90337-2. [DOI] [PubMed] [Google Scholar]
  33. Weinberg R. A., Penman S. Small molecular weight monodisperse nuclear RNA. J Mol Biol. 1968 Dec;38(3):289–304. doi: 10.1016/0022-2836(68)90387-2. [DOI] [PubMed] [Google Scholar]
  34. Winicov I. Alternate temporal order in ribosomal RNA maturation. J Mol Biol. 1976 Jan 15;100(2):141–155. doi: 10.1016/s0022-2836(76)80145-3. [DOI] [PubMed] [Google Scholar]
  35. Wolf S. F., Schlessinger D. Nuclear metabolism of ribosomal RNA in growing, methionine-limited, and ethionine-treated HeLa cells. Biochemistry. 1977 Jun 14;16(12):2783–2791. doi: 10.1021/bi00631a031. [DOI] [PubMed] [Google Scholar]
  36. ZILVERSMIT D. B. The design and analysis of isotope experiments. Am J Med. 1960 Nov;29:832–848. doi: 10.1016/0002-9343(60)90117-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES