Abstract
The hydrolysis of 4-nitrophenyl acetate catalysed by cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) from sheep liver was studied by steady-state and transient kinetic techniques. NAD+ and NADH stimulated the steady-state rate of ester hydrolysis at concentrations expected on the basis of their Michaelis constants from the dehydrogenase reaction. At higher concentrations of the coenzymes, both NAD+ and NADH inhibited the reaction competitively with respect to 4-nitrophenyl acetate, with inhibition constants of 104 and 197 micron respectively. Propionaldehyde and chloral hydrate are competitive inhibitors of the esterase reaction. A burst in the production of 4-nitrophenoxide ion was observed, with a rate constant of 12 +/- 2s-1 and a burst amplitude that was 30% of that expected on the basis of the known NADH-binding site concentration. The rate-limiting step for the esterase reaction occurs after the formation of 4-nitrophenoxide ion. Arguments are presented for the existence of distinct ester- and aldehyde-binding sites.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENDER M. L., KEZDY J. MECHANISM OF ACTION OF PROTEOLYTIC ENZYMES. Annu Rev Biochem. 1965;34:49–76. doi: 10.1146/annurev.bi.34.070165.000405. [DOI] [PubMed] [Google Scholar]
- Behme M. T., Cordes E. H. Kinetics of the glyceraldehyde 3-phosphate dehydrogenase-catalyzed hydrolysis of p-nitrophenyl acetate. J Biol Chem. 1967 Dec 10;242(23):5500–5509. [PubMed] [Google Scholar]
- Boland M. J., Hardman M. J. The actinidin-catalysed hydrolysis of N-a-benzyloxycarbonyl-L-lysine p-nitrophenyl ester. pH dependence and mechanism. Eur J Biochem. 1973 Jul 16;36(2):575–582. doi: 10.1111/j.1432-1033.1973.tb02947.x. [DOI] [PubMed] [Google Scholar]
- Crow K. E., Kitson T. M., MacGibbon A. K., Batt R. D. Intracellular localisation and properties of aldehyde dehydrogenases from sheep liver. Biochim Biophys Acta. 1974 May 20;350(1):121–128. doi: 10.1016/0005-2744(74)90209-5. [DOI] [PubMed] [Google Scholar]
- Eckfeldt J. H., Yonetani T. Kinetics and mechanism of the F1 isozyme of horse liver aldehyde dehydrogenase. Arch Biochem Biophys. 1976 Mar;173(1):273–281. doi: 10.1016/0003-9861(76)90260-5. [DOI] [PubMed] [Google Scholar]
- Feldman R. I., Weiner H. Horse liver aldehyde dehydrogenase. II. Kinetics and mechanistic implications of the dehydrogenase and esterase activity. J Biol Chem. 1972 Jan 10;247(1):267–272. [PubMed] [Google Scholar]
- Julian R., Duncan S. The action of progesterone and diethylstilboestrol on the dehydrogenase and esterase activities of a purified aldehyde dehydrogenase from rabbit liver. Biochem J. 1977 Jan 1;161(1):123–130. doi: 10.1042/bj1610123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEZDY F. J., BENDER M. L. The kinetics of the alpha-chymotrypsin-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry. 1962 Nov;1:1097–1106. doi: 10.1021/bi00912a021. [DOI] [PubMed] [Google Scholar]
- MacGibbon A. K., Blackwell L. F., Buckley P. D. Kinetics of sheep-liver cytoplasmic aldehyde dehydrogenase. Eur J Biochem. 1977 Jul 1;77(1):93–100. doi: 10.1111/j.1432-1033.1977.tb11645.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacGibbon A. K., Blackwell L. F., Buckley P. D. Pre-steady-state kinetic studies on cytoplasmic sheep liver aldehyde dehydrogenase. Biochem J. 1977 Nov 1;167(2):469–477. doi: 10.1042/bj1670469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacGibbon A. K., Buckley P. D., Blackwell L. F. Evidence for two-step binding of reduced nicotinamide-adenine dinucleotide to aldehyde dehydrogenase. Biochem J. 1977 Sep 1;165(3):455–462. doi: 10.1042/bj1650455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathew E., Meriwether B. P., Park J. H. The enzymatic significance of S-acetylation and N-acetylation of 3-phosphoglyceraldehyde dehydrogenase. J Biol Chem. 1967 Nov 10;242(21):5024–5033. [PubMed] [Google Scholar]
- Sidhu R. S., Blair A. H. Human liver akdehyde dehydrogenase. Kinetics of aldehyde oxidation. J Biol Chem. 1975 Oct 10;250(19):7899–7904. [PubMed] [Google Scholar]
- Sidhu R. S., Blair A. H. Human liver aldehyde dehydrogenase. Esterase activity. J Biol Chem. 1975 Oct 10;250(19):7894–7898. [PubMed] [Google Scholar]
- Weiner H., Hu J. H., Sanny C. G. Rate-limiting steps for the esterase and dehydrogenase reaction catalyzed by horse liver aldehyde dehydrogenase. J Biol Chem. 1976 Jul 10;251(13):3853–3855. [PubMed] [Google Scholar]