Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Feb 1;169(2):355–359. doi: 10.1042/bj1690355

Purification and properties of a nuclear protein kinase associated with ribonucleic acid polymerase I.

J Hirsch, O J Martelo
PMCID: PMC1184174  PMID: 629759

Abstract

A cyclic AMP-dependent nuclear protein kinase was found to be closely associated with rat liver nucleolar RNA polymerase I throughout most of its purification. This protein kinase was purified to near homogeneity. It exhibits a number of unusual catalytic properties, including the inability to utilize Mn2+ when RNA polymerase is the substrate and the ability to phosphorylate both acidic and basic substrates. Phosphorylation of RNA polymerase I by this protein kinase results in the formation of phosphoester bonds characteristic of phosphoserine and phosphothreonine. Radioautography of polyacrylamide-gel electrophoretograms of the phosphorylated RNA polymerase I revealed that the 32P was located primarily on enzyme subunits SA1, SA3, SA5, and SA6 [nomenclature of Kedinger, Gissinger & Chambon (1974) Eur. J. Biochem, 44, 421-436].

Full text

PDF
355

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chelala C. A., Torres H. N. Regulation of skeletal muscle phosphorylase phosphatase activity. II. Interconversions. Biochim Biophys Acta. 1970 Mar 18;198(3):504–513. doi: 10.1016/0005-2744(70)90128-2. [DOI] [PubMed] [Google Scholar]
  2. FISCHER E. H., GRAVES D. J., CRITTENDEN E. R. S., KREBS E. G. Structure of the site phosphorylated in the phosphorylase b to a reaction. J Biol Chem. 1959 Jul;234(7):1698–1704. [PubMed] [Google Scholar]
  3. Gold M. H., Segel I. H. Neurospora crassa protein kinase. Purification, properties, and kinetic mechanism. J Biol Chem. 1974 Apr 25;249(8):2417–2423. [PubMed] [Google Scholar]
  4. Hirsch J., Martelo O. J. Phosphorylation of rat liver ribonucleic acid polymerase I by nuclear protein kinases. J Biol Chem. 1976 Sep 10;251(17):5408–5413. [PubMed] [Google Scholar]
  5. Jungmann R. A., Hiestand P. C., Schweppe J. S. Adenosine 3':5'-monophosphate-dependent protein kinase and the stimulation of ovarian nuclear ribonucleic acid polymerase activities. J Biol Chem. 1974 Sep 10;249(17):5444–5451. [PubMed] [Google Scholar]
  6. Kang Y. J., Olson M. O., Busch H. Phosphorylation of acid-soluble proteins in isolated nucleoli of Novikoff hepatoma ascites cells. Effects of divalent cations. J Biol Chem. 1974 Sep 10;249(17):5580–5585. [PubMed] [Google Scholar]
  7. Kedinger C., Gissinger F., Chambon P. Animal DNA-dependent RNA polymerases. Molecular structures and immunological properties of calf-thymus enzyme AI and of calf-thymus and rat-liver enzymes B. Eur J Biochem. 1974 May 15;44(2):421–436. doi: 10.1111/j.1432-1033.1974.tb03500.x. [DOI] [PubMed] [Google Scholar]
  8. Martelo O. J., Hirsch J. Effect of nuclear protein kinases on mammalian RNA synthesis. Biochem Biophys Res Commun. 1974 Jun 18;58(4):1008–1015. doi: 10.1016/s0006-291x(74)80244-5. [DOI] [PubMed] [Google Scholar]
  9. Martelo O. J., Woo S. L., Davie E. W. Phosphorylation of Escherichia coli RNA polymerase by rabbit skeletal muscle protein kinase. J Mol Biol. 1974 Aug 25;87(4):685–696. doi: 10.1016/0022-2836(74)90078-3. [DOI] [PubMed] [Google Scholar]
  10. Schwartz L. B., Sklar V. E., Jaehning J. A., Weinmann R., Roeder R. G. Isolation and partial characterization of the multiple forms of deoxyribonucleic acid-dependent ribonucleic acid polymerase in the mouse myeloma, MOPC 315. J Biol Chem. 1974 Sep 25;249(18):5889–5897. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES