Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Jan 1;169(1):133–142. doi: 10.1042/bj1690133

Stabilization and solubilization of bovine corpus-luteum adenylate cyclase. The effects of guanosine triphosphate, guanosine 5′-[β,γ-imido]triphosphate, sodium fluoride and Tris/hydrochloric acid concentration on enzyme activity

John L Young †,*, David A Stansfield
PMCID: PMC1184202  PMID: 564693

Abstract

1. Adenylate cyclase of the washed 600g sediment of bovine corpus-luteum homogenate is stimulated by p[NH]ppG (guanosine 5′-[β,γ-imido]triphosphate), the imido analogue of GTP, and to a lesser extent by GTP itself. Activation by p[NH]ppG is not reversed by extensive washing before assay, but can, however, be reversed by NaF. 2. Both p[NH]ppG and NaF stabilize the enzyme during incubation at 37°C. NaF also causes an irreversible activation, but only of part of the potentially NaF-activatable adenylate cyclase; there are possibly two components of the adenylate cyclase system, which can be distinguished by their response to NaF. 3. Solubilization of the adenylate cyclase activity in the 600g sediment, by using the non-ionic detergent Lubrol-PX, gave variable yields. A relationship between the magnitude of NaF stimulation of the 600g-sediment enzyme and the yield of soluble activity derived from the sediment was recognized. The results suggest that the pre-existing state of the enzyme complex in vivo is reflected by the response in vitro to NaF and may determine the success with which activity can be solubilized. 4. The absolute yields of soluble activity could be increased by p[NH]ppG preactivation of the 600g sediment. During the development of the maximally active state by preincubation with p[NH]ppG the enzyme passes through a stage in which Lubrol solubilization is increased, but the maximally active state is itself less amenable to solubilization. p[NH]ppG activation causes the appearance of NaF-inhibited states, which appear to be preferentially solubilized by Lubrol-PX.

Full text

PDF
133

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avdalović N., Sachs G. (Na plus minus K+)-APTase in the kidney of normal and castrated mice. Biochim Biophys Acta. 1971 Apr 20;237(1):137–140. doi: 10.1016/0304-4165(71)90042-0. [DOI] [PubMed] [Google Scholar]
  2. Bennett V., Cuatrecasas P. Irreversible activation of adenylate cyclase of toad erythrocyte plasma membrane by 5'-guanylylimidodiphosphate. J Membr Biol. 1976;27(3):207–232. doi: 10.1007/BF01869137. [DOI] [PubMed] [Google Scholar]
  3. Birnbaumer L., Nakahara T., Yang P. C. Studies on receptor-mediated activation of adenylyl cyclases. II. Nucleotide and nucleoside regulation of the activities of the beef renal medullary adenylyl cyclase and their stimulation by neurohypophyseal hormones. J Biol Chem. 1974 Dec 25;249(24):7857–7866. [PubMed] [Google Scholar]
  4. Birnbaumer L., Pohl S. L., Rodbell M. Adenyl cyclase in fat cells. 1. Properties and the effects of adrenocorticotropin and fluoride. J Biol Chem. 1969 Jul 10;244(13):3468–3476. [PubMed] [Google Scholar]
  5. Birnbaumer L., Pohl S. L., Rodbell M., Sundby F. The glucagon-sensitive adenylate cyclase system in plasma membranes of rat liver. VII. Hormonal stimulation: reversibility and dependence on concentration of free hormone. J Biol Chem. 1972 Apr 10;247(7):2038–2043. [PubMed] [Google Scholar]
  6. Bockaert J., Hunzicker-Dunn M., Birnbaumer L. Hormone-stimulated desensitization of hormone-dependent adenylyl cyclase. Dual action of luteninizing hormone on pig graafian follicle membranes. J Biol Chem. 1976 May 10;251(9):2653–2663. [PubMed] [Google Scholar]
  7. Brostrom M. A., Brostrom C. O., Breckenridge B. M., Wolff D. J. Regulation of adenylate cyclase from glial tumor cells by calcium and a calcium-binding protein. J Biol Chem. 1976 Aug 10;251(15):4744–4750. [PubMed] [Google Scholar]
  8. Conti M., Harwood J. P., Hsueh A. J., Dufau M. L., Catt K. J. Gonadotropin-induced loss of hormone receptors and desensitization of adenylate cyclase in the ovary. J Biol Chem. 1976 Dec 10;251(23):7729–7731. [PubMed] [Google Scholar]
  9. Cuatrecasas P., Bennett V., Jacobs S. Irreversible stimulation of adenylate cyclase activity of fat cell membranes of phosphoramidate and phosphonate analogs of GTP. J Membr Biol. 1975;23(3-4):249–278. doi: 10.1007/BF01870253. [DOI] [PubMed] [Google Scholar]
  10. Cuatrecasas P., Jacobs S., Bennett V. Activation of adenylate cyclase by phosphoramidate and phosphonate analogs of GTP: possible role of covalent enzyme-substrate intermediates in the mechanism of hormonal activation. Proc Natl Acad Sci U S A. 1975 May;72(5):1739–1743. doi: 10.1073/pnas.72.5.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forte L. R. Characterization of the adenyl cyclase of rat kidney plasma membranes. Biochim Biophys Acta. 1972 May 9;266(2):524–542. doi: 10.1016/0005-2736(72)90108-3. [DOI] [PubMed] [Google Scholar]
  12. Hammes G. G., Rodbell M. Simple model for hormone-activated adenylate cyclase systems. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1189–1192. doi: 10.1073/pnas.73.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hunzicker-Dunn M., Birnbaumer L. Adenylyl cyclase activities in ovarian tissues. IV. Gonadotrophin-induced desensitization of the luteal adenylyl cyclase throughout pregnancy and pseudopregnancy in the rabbit and the rat. Endocrinology. 1976 Jul;99(1):211–222. doi: 10.1210/endo-99-1-211. [DOI] [PubMed] [Google Scholar]
  14. Jacobs S., Bennett V., Cuatrecasas P. Kinetics of irreversible activation of adenylate cyclase of fat cell membranes by phosphonium and phosphoramidate analogs of gtp1. J Cyclic Nucleotide Res. 1976 Jul-Aug;2(4):205–223. [PubMed] [Google Scholar]
  15. Jakobs K. H., Schultz K., Schultz G. Hemmung von adenyl-Cyclase-Präparationen aus der Rattenniere durch Calciumionen und verschiedene Diuretica. Naunyn Schmiedebergs Arch Pharmacol. 1972;273(3):248–266. doi: 10.1007/BF00501417. [DOI] [PubMed] [Google Scholar]
  16. Johnson R. A., Pilkis S. J., Hamet P. Liver membrane adenylate cyclase. Synergistic effects of anions on fluoride, glucagon, and guanyl nucleotide stimulation. J Biol Chem. 1975 Aug 25;250(16):6599–6607. [PubMed] [Google Scholar]
  17. Johnson R. A., Sutherland E. W. Detergent-dispersed adenylate cyclase from rat brain. Effects of fluoride, cations, and chelators. J Biol Chem. 1973 Jul 25;248(14):5114–5121. [PubMed] [Google Scholar]
  18. Kalish M. I., Pineyro M. A., Cooper B., Gregerman R. I. Adenylyl cyclase activation by halide anions other than fluoride. Biochem Biophys Res Commun. 1974 Nov 27;61(2):781–787. doi: 10.1016/0006-291x(74)91025-0. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lefkowitz R. J., Mullikin D., Caron M. G. Regulation of beta-adrenergic receptors by guanyl-5'-yl imidodiphosphate and other purine nucleotides. J Biol Chem. 1976 Aug 10;251(15):4686–4692. [PubMed] [Google Scholar]
  21. Levey G. S. Solubilization of myocardial adenyl cyclase. Biochem Biophys Res Commun. 1970 Jan 6;38(1):86–92. doi: 10.1016/0006-291x(70)91087-9. [DOI] [PubMed] [Google Scholar]
  22. Levey G. S. Solubilization of myocardial adenyl cyclase: less of hormone responsiveness and activation by phospholipids. Ann N Y Acad Sci. 1971 Dec 30;185:449–457. doi: 10.1111/j.1749-6632.1971.tb45272.x. [DOI] [PubMed] [Google Scholar]
  23. Levitzki A. The role of GTP in the activation of adenylate cyclase. Biochem Biophys Res Commun. 1977 Feb 7;74(3):1154–1159. doi: 10.1016/0006-291x(77)91639-4. [DOI] [PubMed] [Google Scholar]
  24. Londos C., Rodbell M. Multiple inhibitory and activating effects of nucleotides and magnesium on adrenal adenylate cyclase. J Biol Chem. 1975 May 10;250(9):3459–3465. [PubMed] [Google Scholar]
  25. MacDonald I. A. Differentiation of fluorides-stimulated and non-fluoride-stimulated components of beef brain cortex adenylate cyclase cy calcium ions, ethyleneglycol-bis-(beta-aminoethyl ether) N,N'-tetraacetic acid and Triton X-100. Biochim Biophys Acta. 1975 Jul 27;397(1):244–253. doi: 10.1016/0005-2744(75)90197-7. [DOI] [PubMed] [Google Scholar]
  26. Manganiello V. C., Vaughan M. Activation and inhibition of fat cell adenylate cyclase by fluoride. J Biol Chem. 1976 Oct 25;251(20):6205–6209. [PubMed] [Google Scholar]
  27. Neer E. J. The size of adenylate cyclase. J Biol Chem. 1974 Oct 25;249(20):6527–6531. [PubMed] [Google Scholar]
  28. Neer E. J. Two soluble forms of guanosine 5'-(beta,gamma-imino)triphosphate and fluoride-activated adenylate cyclase. J Biol Chem. 1976 Sep 25;251(18):5831–5834. [PubMed] [Google Scholar]
  29. Oye I., Sutherland E. W. The effect of epinephrine and other agents on adenyl cyclase in the cell membrane of avian erythrocytes. Biochim Biophys Acta. 1966 Oct 31;127(2):347–354. doi: 10.1016/0304-4165(66)90389-8. [DOI] [PubMed] [Google Scholar]
  30. Pastan I., Pricer W., Blanchette-Mackie J. Stu8es on an ACTH-activated adenyl cyclase from a mouse adrenal tumor. Metabolism. 1970 Oct;19(10):809–817. doi: 10.1016/0026-0495(70)90078-8. [DOI] [PubMed] [Google Scholar]
  31. Perkins J. P., Moore M. M. Adenyl cyclase of rat cerebral cortex. Activation of sodium fluoride and detergents. J Biol Chem. 1971 Jan 10;246(1):62–68. [PubMed] [Google Scholar]
  32. Pfeuffer T., Helmreich E. J. Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein. J Biol Chem. 1975 Feb 10;250(3):867–876. [PubMed] [Google Scholar]
  33. Queener S. F., Fleming J. W., Bell N. H. Solubilization of calcitonin-responsive renal cortical adenylate cyclase. J Biol Chem. 1975 Oct 10;250(19):7586–7592. [PubMed] [Google Scholar]
  34. Ray T. K., Tomasi V., Marinetti G. V. Hormone action at the membrane level. I. Properties of adenyl cyclase in isolated plasma membranes of rat liver. Biochim Biophys Acta. 1970 Jul 7;211(1):20–30. doi: 10.1016/0005-2736(70)90119-7. [DOI] [PubMed] [Google Scholar]
  35. Rodbell M. On the mechanism of activation of fat cell adenylate cyclase by guanine nucleotides. An explanation for the biphasic inhibitory and stimulatory effects of the nucleotides and the role of hormones. J Biol Chem. 1975 Aug 10;250(15):5826–5834. [PubMed] [Google Scholar]
  36. Roy C., Rajerison R., Bockaert J., Jard S. Solubilization of the [8-lysine]vasopressin receptor and adenylate cyclase from pig kidney plasma membranes. J Biol Chem. 1975 Oct 10;250(19):7885–7893. [PubMed] [Google Scholar]
  37. Ryan J., Storm D. R. Solubilization of glucagon and epinephrine sensitive adenylate cyclase from rat liver plasma membranes. Biochem Biophys Res Commun. 1974 Sep 9;60(1):304–311. doi: 10.1016/0006-291x(74)90205-8. [DOI] [PubMed] [Google Scholar]
  38. Salomon Y., Lin M. C., Londos C., Rendell M., Rodbell M. The hepatic adenylate cyclase system. I. Evidence for transition states and structural requirements for guanine nucloetide activiation. J Biol Chem. 1975 Jun 10;250(11):4239–4245. [PubMed] [Google Scholar]
  39. Sapag-Hagar M., Greenbaum A. L. Adenosine 3':5'-monophosphate and hormone interrelationships in the mammary gland of the rat during pregnancy and lactation. Eur J Biochem. 1974 Sep 1;47(2):303–312. doi: 10.1111/j.1432-1033.1974.tb03694.x. [DOI] [PubMed] [Google Scholar]
  40. Schramm M., Naim E. Adenyl cyclase of rat parotid gland. Activation by fluoride and norepinephrine. J Biol Chem. 1970 Jun;245(12):3225–3231. [PubMed] [Google Scholar]
  41. Schramm M., Rodbell M. A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanylyl imidodiphosphate in frog erythrocyte membranes. J Biol Chem. 1975 Mar 25;250(6):2232–2237. [PubMed] [Google Scholar]
  42. Severson D. L., Drummond G. I., Sulakhe P. V. Adenylate cyclase in skeletal muscle. Kinetic properties and hormonal stimulation. J Biol Chem. 1972 May 10;247(9):2949–2958. [PubMed] [Google Scholar]
  43. Sevilla N., Steer M. L., Levitzki A. Synergistic activation of adenylate cyclase by guanylyl imidophosphate and epinephrine. Biochemistry. 1976 Aug 10;15(16):3493–3499. doi: 10.1021/bi00661a015. [DOI] [PubMed] [Google Scholar]
  44. Spiegel A. M., Downs R. W., Jr, Aurbach G. D. Guanosine 5', alpha-beta-methylene, triphosphate, a novel GTP analog, causes persistent activation of adenylate cyclase: evidence against pyrophosphorylation mechanism. Biochem Biophys Res Commun. 1977 Jun 6;76(3):758–764. doi: 10.1016/0006-291x(77)91565-0. [DOI] [PubMed] [Google Scholar]
  45. Stansfield D. A., Franks D. J. Adenyl cyclase and "ATPase" in rat corpus luteum. I. Some properties of the enzymes. Biochim Biophys Acta. 1971 Sep 22;242(3):606–616. doi: 10.1016/0005-2744(71)90153-7. [DOI] [PubMed] [Google Scholar]
  46. Stansfield D. A., Franks D. J., Wilkinson G. H., Horne J. R. Studies in the formation and degradation of adenosine 3',5'-cyclic monophosphate in corpus luteum. J Steroid Biochem. 1972 Apr;3(3):643–653. doi: 10.1016/0022-4731(72)90110-0. [DOI] [PubMed] [Google Scholar]
  47. Sulakhe P. V., Dhalla N. S. Adenylate cyclase of heart sarcotubular membranes. Biochim Biophys Acta. 1973 Feb 15;293(2):379–396. doi: 10.1016/0005-2744(73)90346-x. [DOI] [PubMed] [Google Scholar]
  48. Sulimovici S., Lunenfeld B. The effect of gonadotropins on the mitochondrial adenylate cyclase of rat testis. Biochem Biophys Res Commun. 1973 Dec 10;55(3):673–679. doi: 10.1016/0006-291x(73)91197-2. [DOI] [PubMed] [Google Scholar]
  49. Swislocki N. I., Tierney J. Solubilization, stabilization, and partial purification of brain adenylate cyclase from rat. Biochemistry. 1973 May 8;12(10):1862–1866. doi: 10.1021/bi00734a004. [DOI] [PubMed] [Google Scholar]
  50. Varimo K., Londesborough J. Solubilization and other studies on adenylate cyclase of baker's yeast. Biochem J. 1976 Nov;159(2):363–370. doi: 10.1042/bj1590363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wilkinson G. H., Stansfield D. A. Proceedings: Solubilization of adenylate cyclase of rat corpora lutes. Biochem Soc Trans. 1974;2(3):440–441. doi: 10.1042/bst0020440. [DOI] [PubMed] [Google Scholar]
  52. Young J. L., Stansfield D. A. Use of a competitive protein-binding assay for adenosine 3':5'-phosphate for the study of bovine corpus luteum adenylate cyclase. J Endocrinol. 1977 Apr;73(1):123–134. doi: 10.1677/joe.0.0730123. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES