Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Jan;72(1):383–387. doi: 10.1016/S0006-3495(97)78677-6

Binding to phosphatidyl serine membranes causes a conformational change in the concave face of annexin I.

M de la Fuente 1, C G Ossa 1
PMCID: PMC1184327  PMID: 8994623

Abstract

Recent studies have revealed that binding of annexin I to phospholipids induces the formation of a second phospholipid binding site. It is shown that the N terminus on the concave side of membrane-bound annexin I is cleaved much faster by trypsin or cathepsin than the N terminus of the free protein. The reactivity of the unique disulfide bond located near the concave face was similarly increased by membrane binding. These results demonstrate that Ca(2+)-dependent membrane binding induces a conformational change on the concave side of the annexin I molecule and support the notion that this face of the molecule may contribute to the formation of the secondary membrane-binding site.

Full text

PDF
383

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando Y., Imamura S., Hong Y. M., Owada M. K., Kakunaga T., Kannagi R. Enhancement of calcium sensitivity of lipocortin I in phospholipid binding induced by limited proteolysis and phosphorylation at the amino terminus as analyzed by phospholipid affinity column chromatography. J Biol Chem. 1989 Apr 25;264(12):6948–6955. [PubMed] [Google Scholar]
  2. Andree H. A., Willems G. M., Hauptmann R., Maurer-Fogy I., Stuart M. C., Hermens W. T., Frederik P. M., Reutelingsperger C. P. Aggregation of phospholipid vesicles by a chimeric protein with the N-terminus of annexin I and the core of annexin V. Biochemistry. 1993 May 4;32(17):4634–4640. doi: 10.1021/bi00068a022. [DOI] [PubMed] [Google Scholar]
  3. Concha N. O., Head J. F., Kaetzel M. A., Dedman J. R., Seaton B. A. Rat annexin V crystal structure: Ca(2+)-induced conformational changes. Science. 1993 Sep 3;261(5126):1321–1324. doi: 10.1126/science.8362244. [DOI] [PubMed] [Google Scholar]
  4. Ernst J. D., Hoye E., Blackwood R. A., Mok T. L. Identification of a domain that mediates vesicle aggregation reveals functional diversity of annexin repeats. J Biol Chem. 1991 Apr 15;266(11):6670–6673. [PubMed] [Google Scholar]
  5. Francis J. W., Balazovich K. J., Smolen J. E., Margolis D. I., Boxer L. A. Human neutrophil annexin I promotes granule aggregation and modulates Ca(2+)-dependent membrane fusion. J Clin Invest. 1992 Aug;90(2):537–544. doi: 10.1172/JCI115892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haigler H. T., Schlaepfer D. D., Burgess W. H. Characterization of lipocortin I and an immunologically unrelated 33-kDa protein as epidermal growth factor receptor/kinase substrates and phospholipase A2 inhibitors. J Biol Chem. 1987 May 15;262(14):6921–6930. [PubMed] [Google Scholar]
  7. Johnstone S. A., Hubaishy I., Waisman D. M. Regulation of annexin I-dependent aggregation of phospholipid vesicles by protein kinase C. Biochem J. 1993 Sep 15;294(Pt 3):801–807. doi: 10.1042/bj2940801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klee C. B. Ca2+-dependent phospholipid- (and membrane-) binding proteins. Biochemistry. 1988 Sep 6;27(18):6645–6653. doi: 10.1021/bi00418a001. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Lee G., de la Fuente M., Pollard H. B. A barium-dependent chromaffin granule aggregating protein from bovine adrenal medulla and other tissues. Ann N Y Acad Sci. 1991;635:477–479. doi: 10.1111/j.1749-6632.1991.tb36532.x. [DOI] [PubMed] [Google Scholar]
  11. Liu L., Zimmerman U. J. An intramolecular disulfide bond is essential for annexin I-mediated liposome aggregation. Biochem Mol Biol Int. 1995 Feb;35(2):345–350. [PubMed] [Google Scholar]
  12. Meers P., Mealy T., Pavlotsky N., Tauber A. I. Annexin I-mediated vesicular aggregation: mechanism and role in human neutrophils. Biochemistry. 1992 Jul 21;31(28):6372–6382. doi: 10.1021/bi00143a003. [DOI] [PubMed] [Google Scholar]
  13. Meers P., Mealy T. Relationship between annexin V tryptophan exposure, calcium, and phospholipid binding. Biochemistry. 1993 May 25;32(20):5411–5418. doi: 10.1021/bi00071a016. [DOI] [PubMed] [Google Scholar]
  14. Meers P., Mealy T., Tauber A. I. Annexin I interactions with human neutrophil specific granules: fusogenicity and coaggregation with plasma membrane vesicles. Biochim Biophys Acta. 1993 Apr 22;1147(2):177–184. doi: 10.1016/0005-2736(93)90002-h. [DOI] [PubMed] [Google Scholar]
  15. Ohnishi M., Tokuda M., Masaki T., Fujimura T., Tai Y., Itano T., Matsui H., Ishida T., Konishi R., Takahara J. Involvement of annexin-I in glucose-induced insulin secretion in rat pancreatic islets. Endocrinology. 1995 Jun;136(6):2421–2426. doi: 10.1210/endo.136.6.7750463. [DOI] [PubMed] [Google Scholar]
  16. Peers S. H., Flower R. J. The role of lipocortin in corticosteroid actions. Am Rev Respir Dis. 1990 Feb;141(2 Pt 2):S18–S21. [PubMed] [Google Scholar]
  17. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  18. Schlaepfer D. D., Haigler H. T. Characterization of Ca2+-dependent phospholipid binding and phosphorylation of lipocortin I. J Biol Chem. 1987 May 15;262(14):6931–6937. [PubMed] [Google Scholar]
  19. Schlaepfer D. D., Haigler H. T. Expression of annexins as a function of cellular growth state. J Cell Biol. 1990 Jul;111(1):229–238. doi: 10.1083/jcb.111.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tait J. F., Sakata M., McMullen B. A., Miao C. H., Funakoshi T., Hendrickson L. E., Fujikawa K. Placental anticoagulant proteins: isolation and comparative characterization four members of the lipocortin family. Biochemistry. 1988 Aug 23;27(17):6268–6276. doi: 10.1021/bi00417a011. [DOI] [PubMed] [Google Scholar]
  21. Wang W., Creutz C. E. Regulation of the chromaffin granule aggregating activity of annexin I by phosphorylation. Biochemistry. 1992 Oct 20;31(41):9934–9939. doi: 10.1021/bi00156a011. [DOI] [PubMed] [Google Scholar]
  22. Wang W., Creutz C. E. Role of the amino-terminal domain in regulating interactions of annexin I with membranes: effects of amino-terminal truncation and mutagenesis of the phosphorylation sites. Biochemistry. 1994 Jan 11;33(1):275–282. doi: 10.1021/bi00167a036. [DOI] [PubMed] [Google Scholar]
  23. Weng X., Luecke H., Song I. S., Kang D. S., Kim S. H., Huber R. Crystal structure of human annexin I at 2.5 A resolution. Protein Sci. 1993 Mar;2(3):448–458. doi: 10.1002/pro.5560020317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zaks W. J., Creutz C. E. Evaluation of the annexins as potential mediators of membrane fusion in exocytosis. J Bioenerg Biomembr. 1990 Apr;22(2):97–120. doi: 10.1007/BF00762942. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES