Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Jan;72(1):388–394. doi: 10.1016/S0006-3495(97)78678-8

Mesoscopic gels at low agarose concentration: perturbation effects of ethanol.

D Bulone 1, J Newman 1, P L San Biagio 1
PMCID: PMC1184328  PMID: 8994624

Abstract

Aqueous agarose solutions at low concentrations (0.5 g/liter) were temperature quenched below the spinodal line to form mutually disconnected mesoscopic gels. In the presence of 6% ethanol, these solutions, obtained by quenching at the same temperature depth as in pure water, appear much more fluid, as determined by probe diffusion experiments. We show by static and dynamic light scattering that this can be explained by the solvent-mediated effects of ethanol, leading to a globular shape of mesoscopic agarose gels, rather than to an extended rodlike structure observed in pure water. Our findings show the significant effects of solvent perturbations on particle condensation and, therefore, may be useful in understanding the role of the solvent in the folding of biomolecules.

Full text

PDF
388

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binder S., Sanderson L. M. The role of the epidemiologist in natural disasters. Ann Emerg Med. 1987 Sep;16(9):1081–1084. doi: 10.1016/s0196-0644(87)80763-1. [DOI] [PubMed] [Google Scholar]
  2. Bloomfield V. A. DNA condensation. Curr Opin Struct Biol. 1996 Jun;6(3):334–341. doi: 10.1016/s0959-440x(96)80052-2. [DOI] [PubMed] [Google Scholar]
  3. Bulone D., San Biagio P. L. Mesoscopic gel at low agarose concentration in water: a dynamic light scattering study. Biophys J. 1995 Apr;68(4):1569–1573. doi: 10.1016/S0006-3495(95)80329-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bulone D., San Biagio P. L., Palma-Vittorelli M. B., Palma M. U. The role of water in hemoglobin function and stability. Science. 1993 Feb 26;259(5099):1335–1336. doi: 10.1126/science.8446903. [DOI] [PubMed] [Google Scholar]
  5. Emanuele A, Palma-Vittorelli MB. Time-resolved experimental study of shear viscosity in the course of spinodal demixing. Phys Rev Lett. 1992 Jul 6;69(1):81–84. doi: 10.1103/PhysRevLett.69.81. [DOI] [PubMed] [Google Scholar]
  6. Glotzer SC, Gyure MF, Sciortino F, Coniglio A, Stanley HE. Pinning in phase-separating systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jan;49(1):247–258. doi: 10.1103/physreve.49.247. [DOI] [PubMed] [Google Scholar]
  7. Madonia F., San Biagio P. L., Palma M. U., Schiliro' G., Musumeci S., Russo G. Photon scattering as a probe of microviscosity and channel size in gels such as sickle haemoglobin. 1983 Mar 31-Apr 6Nature. 302(5907):412–415. doi: 10.1038/302412a0. [DOI] [PubMed] [Google Scholar]
  8. San Biagio P. L., Bulone D., Emanuele A., Palma M. U. Self-assembly of biopolymeric structures below the threshold of random cross-link percolation. Biophys J. 1996 Jan;70(1):494–499. doi: 10.1016/S0006-3495(96)79595-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. San Biagio P. L., Palma M. U. Spinodal lines and Flory-Huggins free-energies for solutions of human hemoglobins HbS and HbA. Biophys J. 1991 Aug;60(2):508–512. doi: 10.1016/S0006-3495(91)82078-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sciortino F., Prasad K. U., Urry D. W., Palma M. U. Self-assembly of bioelastomeric structures from solutions: mean-field critical behavior and Flory-Huggins free energy of interactions. Biopolymers. 1993 May;33(5):743–752. doi: 10.1002/bip.360330504. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES