Abstract
The kinetics of transfer of natural and fluorescent nonesterified fatty acids (NEFA) and lysolecithins (lysoPC) from phospholipid and protein surfaces were measured. The kinetics of transfer of 12-(1-pyrenyl)dodecanoic acid, from liquid crystalline and gel phase single unilamellar phospholipid vesicles, very low, low, and high density lipoproteins, human serum albumin, and rat liver fatty acid-binding protein, were first-order and characterized by similar rate constants. The halftimes (t1/2) of NEFA transfer from lipids and proteins were dependent on the acyl chain structure according to log t1/2 = -0.62n + 0.59m + 12.0, where n and m, respectively, are the numbers of carbon atoms and double bonds. The structure of the donor surface had a measurable but smaller effect on transfer rates. The kinetics of NEFA and lysoPC transfer are slow relative to the lipolytic processes that liberate them. Therefore, one would predict a transient accumulation of NEFA and lysoPC during lipolysis and an attendant modulation of many metabolic processes within living cells and within the plasma compartment of blood. These data will be useful in the refinement of current models of membrane and lipoprotein function and in the selection of fluorescent NEFA analogs for studying transport in living cells.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Barenholz Y., Gibbes D., Litman B. J., Goll J., Thompson T. E., Carlson R. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry. 1977 Jun 14;16(12):2806–2810. doi: 10.1021/bi00631a035. [DOI] [PubMed] [Google Scholar]
- Bhamidipati S. P., Hamilton J. A. Hydrolysis of a phospholipid in an inert lipid matrix by phospholipase A2: a 13C NMR study. Biochemistry. 1989 Aug 8;28(16):6667–6672. doi: 10.1021/bi00442a020. [DOI] [PubMed] [Google Scholar]
- Bihain B. E., Deckelbaum R. J., Yen F. T., Gleeson A. M., Carpentier Y. A., Witte L. D. Unesterified fatty acids inhibit the binding of low density lipoproteins to the human fibroblast low density lipoprotein receptor. J Biol Chem. 1989 Oct 15;264(29):17316–17321. [PubMed] [Google Scholar]
- Charlton S. C., Smith L. C. Kinetics of transfer of pyrene and rac-1-oleyl-2-[4-(3-pyrenyl)butanoyl]glycerol between human plasma lipoproteins. Biochemistry. 1982 Aug 17;21(17):4023–4030. doi: 10.1021/bi00260a018. [DOI] [PubMed] [Google Scholar]
- Cistola D. P., Small D. M. Fatty acid distribution in systems modeling the normal and diabetic human circulation. A 13C nuclear magnetic resonance study. J Clin Invest. 1991 Apr;87(4):1431–1441. doi: 10.1172/JCI115149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cistola D. P., Walsh M. T., Corey R. P., Hamilton J. A., Brecher P. Interactions of oleic acid with liver fatty acid binding protein: a carbon-13 NMR study. Biochemistry. 1988 Jan 26;27(2):711–717. doi: 10.1021/bi00402a033. [DOI] [PubMed] [Google Scholar]
- Clark A. B., Quarfordt S. H. Apolipoprotein effects on the lipolysis of perfused triglyceride by heparin-immobilized milk lipase. J Biol Chem. 1985 Apr 25;260(8):4778–4783. [PubMed] [Google Scholar]
- Clarke A. R., Holbrook J. J. The mechanism of activation of lipoprotein lipase by apolipoprotein C-II. The formation of a protein-protein complex in free solution and at a triacylglycerol/water interface. Biochim Biophys Acta. 1985 Mar 1;827(3):358–368. doi: 10.1016/0167-4838(85)90220-1. [DOI] [PubMed] [Google Scholar]
- Daniels C., Noy N., Zakim D. Rates of hydration of fatty acids bound to unilamellar vesicles of phosphatidylcholine or to albumin. Biochemistry. 1985 Jun 18;24(13):3286–3292. doi: 10.1021/bi00334a032. [DOI] [PubMed] [Google Scholar]
- Doody M. C., Pownall H. J., Kao Y. J., Smith L. C. Mechanism and kinetics of transfer of a fluorescent fatty acid between single-walled phosphatidylcholine vesicles. Biochemistry. 1980 Jan 8;19(1):108–116. doi: 10.1021/bi00542a017. [DOI] [PubMed] [Google Scholar]
- Fielding C. J., Fielding P. E. Molecular physiology of reverse cholesterol transport. J Lipid Res. 1995 Feb;36(2):211–228. [PubMed] [Google Scholar]
- Fielding C. J., Shore V. G., Fielding P. E. Lecithin: cholesterol acyltransferase: effects of substrate composition upon enzyme activity. Biochim Biophys Acta. 1972 Aug 11;270(4):513–518. doi: 10.1016/0005-2760(72)90116-6. [DOI] [PubMed] [Google Scholar]
- Fleischer A. B., Shurmantine W. O., Luxon B. A., Forker E. L. Palmitate uptake by hepatocyte monolayers. Effect of albumin binding. J Clin Invest. 1986 Mar;77(3):964–970. doi: 10.1172/JCI112397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagag N., Birnbaum E. R., Darnall D. W. Resonance energy transfer between cysteine-34, tryptophan-214, and tyrosine-411 of human serum albumin. Biochemistry. 1983 May 10;22(10):2420–2427. doi: 10.1021/bi00279a018. [DOI] [PubMed] [Google Scholar]
- Hagag N., McPherson R. A., Birnbaum E. R., Darnall D. W. Anthraniloyl-tyrosine 411 as a spectroscopic probe of fatty acid binding to human serum albumin. J Biol Chem. 1984 May 10;259(9):5411–5413. [PubMed] [Google Scholar]
- Hannigan G. E., Williams B. R. Signal transduction by interferon-alpha through arachidonic acid metabolism. Science. 1991 Jan 11;251(4990):204–207. doi: 10.1126/science.1898993. [DOI] [PubMed] [Google Scholar]
- Hickson-Bick D., Knapp R. D., Sparrow J. T., Sparrow D. A., Gotto A. M., Jr, Massey J. B., Pownall H. J. Kinetics and mechanism of transfer of synthetic model apolipoproteins. Biochemistry. 1988 Oct 4;27(20):7881–7886. doi: 10.1021/bi00420a045. [DOI] [PubMed] [Google Scholar]
- Honoré E., Barhanin J., Attali B., Lesage F., Lazdunski M. External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1937–1941. doi: 10.1073/pnas.91.5.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang J. M., Xian H., Bacaner M. Long-chain fatty acids activate calcium channels in ventricular myocytes. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6452–6456. doi: 10.1073/pnas.89.14.6452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jougasaki M., Kugiyama K., Saito Y., Nakao K., Imura H., Yasue H. Suppression of endothelin-1 secretion by lysophosphatidylcholine in oxidized low density lipoprotein in cultured vascular endothelial cells. Circ Res. 1992 Sep;71(3):614–619. doi: 10.1161/01.res.71.3.614. [DOI] [PubMed] [Google Scholar]
- Kamp F., Hamilton J. A., Kamp F., Westerhoff H. V., Hamilton J. A. Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry. 1993 Oct 19;32(41):11074–11086. doi: 10.1021/bi00092a017. [DOI] [PubMed] [Google Scholar]
- Kamp F., Zakim D., Zhang F., Noy N., Hamilton J. A. Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry. 1995 Sep 19;34(37):11928–11937. doi: 10.1021/bi00037a034. [DOI] [PubMed] [Google Scholar]
- Kume N., Cybulsky M. I., Gimbrone M. A., Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992 Sep;90(3):1138–1144. doi: 10.1172/JCI115932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kume N., Gimbrone M. A., Jr Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J Clin Invest. 1994 Feb;93(2):907–911. doi: 10.1172/JCI117047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Liao J. K., Clark S. L. Regulation of G-protein alpha i2 subunit expression by oxidized low-density lipoprotein. J Clin Invest. 1995 Apr;95(4):1457–1463. doi: 10.1172/JCI117816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lund-Katz S., Hammerschlag B., Phillips M. C. Kinetics and mechanism of free cholesterol exchange between human serum high- and low-density lipoproteins. Biochemistry. 1982 Jun 8;21(12):2964–2969. doi: 10.1021/bi00541a025. [DOI] [PubMed] [Google Scholar]
- Massey J. B., Gotto A. M., Jr, Pownall H. J. Kinetics and mechanism of the spontaneous transfer of fluorescent phosphatidylcholines between apolipoprotein-phospholipid recombinants. Biochemistry. 1982 Jul 20;21(15):3630–3636. doi: 10.1021/bi00258a016. [DOI] [PubMed] [Google Scholar]
- Massey J. B., Hickson-Bick D., Via D. P., Gotto A. M., Jr, Pownall H. J. Fluorescence assay of the specificity of human plasma and bovine liver phospholipid transfer proteins. Biochim Biophys Acta. 1985 Jun 14;835(1):124–131. doi: 10.1016/0005-2760(85)90038-4. [DOI] [PubMed] [Google Scholar]
- Massey J. B., Hickson D., She H. S., Sparrow J. T., Via D. P., Gotto A. M., Jr, Pownall H. J. Measurement and prediction of the rates of spontaneous transfer of phospholipids between plasma lipoproteins. Biochim Biophys Acta. 1984 Jul 6;794(2):274–280. doi: 10.1016/0005-2760(84)90156-5. [DOI] [PubMed] [Google Scholar]
- McKeone B. J., Massey J. B., Knapp R. D., Pownall H. J. Apolipoproteins C-I, C-II, and C-III: kinetics of association with model membranes and intermembrane transfer. Biochemistry. 1988 Jun 14;27(12):4500–4505. doi: 10.1021/bi00412a042. [DOI] [PubMed] [Google Scholar]
- McKeone B. J., Pownall H. J., Massey J. B. Ether phosphatidylcholines: comparison of miscibility with ester phosphatidylcholines and sphingomyelin, vesicle fusion, and association with apolipoprotein A-I. Biochemistry. 1986 Nov 18;25(23):7711–7716. doi: 10.1021/bi00371a064. [DOI] [PubMed] [Google Scholar]
- McLean L. R., Phillips M. C. Kinetics of phosphatidylcholine and lysophosphatidylcholine exchange between unilamellar vesicles. Biochemistry. 1984 Sep 25;23(20):4624–4630. doi: 10.1021/bi00315a017. [DOI] [PubMed] [Google Scholar]
- McMurray H. F., Parthasarathy S., Steinberg D. Oxidatively modified low density lipoprotein is a chemoattractant for human T lymphocytes. J Clin Invest. 1993 Aug;92(2):1004–1008. doi: 10.1172/JCI116605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakano T., Raines E. W., Abraham J. A., Klagsbrun M., Ross R. Lysophosphatidylcholine upregulates the level of heparin-binding epidermal growth factor-like growth factor mRNA in human monocytes. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1069–1073. doi: 10.1073/pnas.91.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naylor B. L., Picardo M., Homan R., Pownall H. J. Effects of fluorophore structure and hydrophobicity on the uptake and metabolism of fluorescent lipid analogs. Chem Phys Lipids. 1991 May-Jun;58(1-2):111–119. doi: 10.1016/0009-3084(91)90117-t. [DOI] [PubMed] [Google Scholar]
- Nichols J. W. Thermodynamics and kinetics of phospholipid monomer-vesicle interaction. Biochemistry. 1985 Nov 5;24(23):6390–6398. doi: 10.1021/bi00344a011. [DOI] [PubMed] [Google Scholar]
- Noy N., Donnelly T. M., Zakim D. Physical-chemical model for the entry of water-insoluble compounds into cells. Studies of fatty acid uptake by the liver. Biochemistry. 1986 Apr 22;25(8):2013–2021. doi: 10.1021/bi00356a027. [DOI] [PubMed] [Google Scholar]
- Ochi H., Kume N., Nishi E., Kita T. Elevated levels of cAMP inhibit protein kinase C--independent mechanisms of endothelial platelet-derived growth factor-B chain and intercellular adhesion molecule-1 gene induction by lysophosphatidylcholine. Circ Res. 1995 Sep;77(3):530–535. doi: 10.1161/01.res.77.3.530. [DOI] [PubMed] [Google Scholar]
- Ordway R. W., Walsh J. V., Jr, Singer J. J. Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science. 1989 Jun 9;244(4909):1176–1179. doi: 10.1126/science.2471269. [DOI] [PubMed] [Google Scholar]
- Patsch J. R., Karlin J. B., Scott L. W., Smith L. C., Gotto A. M., Jr Inverse relationship between blood levels of high density lipoprotein subfraction 2 and magnitude of postprandial lipemia. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1449–1453. doi: 10.1073/pnas.80.5.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patton G. M., Robins S. J., Fasulo J. M., Clark S. B. Influence of lecithin acyl chain composition on the kinetics of exchange between chylomicrons and high density lipoproteins. J Lipid Res. 1985 Nov;26(11):1285–1293. [PubMed] [Google Scholar]
- Pepe S., Bogdanov K., Hallaq H., Spurgeon H., Leaf A., Lakatta E. Omega 3 polyunsaturated fatty acid modulates dihydropyridine effects on L-type Ca2+ channels, cytosolic Ca2+, and contraction in adult rat cardiac myocytes. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8832–8836. doi: 10.1073/pnas.91.19.8832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plant A. L., Pownall H. J., Smith L. C. Transfer of polycyclic aromatic hydrocarbons between model membranes: relation to carcinogenicity. Chem Biol Interact. 1983 Jun;44(3):237–246. doi: 10.1016/0009-2797(83)90052-2. [DOI] [PubMed] [Google Scholar]
- Pownall H. J., Bick D. L., Massey J. B. Spontaneous phospholipid transfer: development of a quantitative model. Biochemistry. 1991 Jun 11;30(23):5696–5700. doi: 10.1021/bi00237a009. [DOI] [PubMed] [Google Scholar]
- Pownall H. J., Smith L. C. Pyrene-labeled lipids: versatile probes of membrane dynamics in vitro and in living cells. Chem Phys Lipids. 1989 Jun;50(3-4):191–211. doi: 10.1016/0009-3084(89)90050-9. [DOI] [PubMed] [Google Scholar]
- Quinn D., Shirai K., Jackson R. L. Lipoprotein lipase: mechanism of action and role in lipoprotein metabolism. Prog Lipid Res. 1983;22(1):35–78. doi: 10.1016/0163-7827(83)90003-6. [DOI] [PubMed] [Google Scholar]
- Quinn M. T., Parthasarathy S., Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2805–2809. doi: 10.1073/pnas.85.8.2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richieri G. V., Ogata R. T., Kleinfeld A. M. Thermodynamics of fatty acid binding to fatty acid-binding proteins and fatty acid partition between water and membranes measured using the fluorescent probe ADIFAB. J Biol Chem. 1995 Jun 23;270(25):15076–15084. doi: 10.1074/jbc.270.25.15076. [DOI] [PubMed] [Google Scholar]
- SHAFRIR E., GATT S., KHASIS S. PARTITION OF FATTY ACIDS OF 20-24 CARBON ATOMS BETWEEN SERUM ALBUMIN AND LIPOPROTEINS. Biochim Biophys Acta. 1965 Apr 5;98:365–371. doi: 10.1016/0005-2760(65)90129-3. [DOI] [PubMed] [Google Scholar]
- Sakai M., Miyazaki A., Hakamata H., Sasaki T., Yui S., Yamazaki M., Shichiri M., Horiuchi S. Lysophosphatidylcholine plays an essential role in the mitogenic effect of oxidized low density lipoprotein on murine macrophages. J Biol Chem. 1994 Dec 16;269(50):31430–31435. [PubMed] [Google Scholar]
- Sammett D., Tall A. R. Mechanisms of enhancement of cholesteryl ester transfer protein activity by lipolysis. J Biol Chem. 1985 Jun 10;260(11):6687–6697. [PubMed] [Google Scholar]
- Saxena U., Witte L. D., Goldberg I. J. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids. J Biol Chem. 1989 Mar 15;264(8):4349–4355. [PubMed] [Google Scholar]
- Schackelford R. E., Misra U. K., Florine-Casteel K., Thai S. F., Pizzo S. V., Adams D. O. Oxidized low density lipoprotein suppresses activation of NF kappa B in macrophages via a pertussis toxin-sensitive signaling mechanism. J Biol Chem. 1995 Feb 24;270(8):3475–3478. doi: 10.1074/jbc.270.8.3475. [DOI] [PubMed] [Google Scholar]
- Schroeder F., Myers-Payne S. C., Billheimer J. T., Wood W. G. Probing the ligand binding sites of fatty acid and sterol carrier proteins: effects of ethanol. Biochemistry. 1995 Sep 19;34(37):11919–11927. doi: 10.1021/bi00037a033. [DOI] [PubMed] [Google Scholar]
- Storch J., Kleinfeld A. M. Transfer of long-chain fluorescent free fatty acids between unilamellar vesicles. Biochemistry. 1986 Apr 8;25(7):1717–1726. doi: 10.1021/bi00355a041. [DOI] [PubMed] [Google Scholar]
- Takikawa H., Kaplowitz N. Binding of bile acids, oleic acid, and organic anions by rat and human hepatic Z protein. Arch Biochem Biophys. 1986 Nov 15;251(1):385–392. doi: 10.1016/0003-9861(86)90086-x. [DOI] [PubMed] [Google Scholar]
- Tall A. R., Krumholz S., Olivecrona T., Deckelbaum R. J. Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis. J Lipid Res. 1985 Jul;26(7):842–851. [PubMed] [Google Scholar]
- Tall A. R. Metabolism of postprandial lipoproteins. Methods Enzymol. 1986;129:469–482. doi: 10.1016/0076-6879(86)29086-2. [DOI] [PubMed] [Google Scholar]
- Weisiger R. A., Ma W. L. Uptake of oleate from albumin solutions by rat liver. Failure to detect catalysis of the dissociation of oleate from albumin by an albumin receptor. J Clin Invest. 1987 Apr;79(4):1070–1077. doi: 10.1172/JCI112920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson T. C., Wilton D. C. Studies on fatty acid-binding proteins. The binding properties of rat liver fatty acid-binding protein. Biochem J. 1987 Oct 15;247(2):485–488. doi: 10.1042/bj2470485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zembowicz A., Jones S. L., Wu K. K. Induction of cyclooxygenase-2 in human umbilical vein endothelial cells by lysophosphatidylcholine. J Clin Invest. 1995 Sep;96(3):1688–1692. doi: 10.1172/JCI118211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang F., Kamp F., Hamilton J. A. Dissociation of long and very long chain fatty acids from phospholipid bilayers. Biochemistry. 1996 Dec 17;35(50):16055–16060. doi: 10.1021/bi961685b. [DOI] [PubMed] [Google Scholar]
