Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 May;72(5):2094–2102. doi: 10.1016/S0006-3495(97)78852-0

Computer simulations of the OmpF porin from the outer membrane of Escherichia coli.

M Watanabe 1, J Rosenbusch 1, T Schirmer 1, M Karplus 1
PMCID: PMC1184403  PMID: 9129811

Abstract

Molecular dynamics simulations were used to study the structure and dynamics of the Escherichia coli OmpF porin, which is composed of three identical 16-stranded beta-barrels. Simulations of the full trimer in the absence of water and the membrane led to significant contraction of the channel in the interior of each beta-barrel. With very weak harmonic constraints (0.005 kcal/mol A2/atom) applied to the main-chain C alpha atoms of the beta-barrel, the structure was stabilized without alteration of the average fluctuations. The resulting distribution of the fluctuations (small for beta-strands, large for loops and turns) is in good agreement with the x-ray B factors. Dynamic cross-correlation functions showed the importance of coupling between the loop motions and barrel flexibility. This was confirmed by the application of constraints corresponding to the observed temperature factors to the barrel C alpha atoms. With these constraints, the beta-barrel fluctuations were much smaller than the experimental values because of the intrinsic restrictions on the atomic motions, and the loop motions were reduced significantly. This result indicates that considerable care is required in introducing constraints to keep proteins close to the experimental structure during simulations, as has been done in several recent studies. Loop 3, which is thought to be important in gating the pore, undergoes a displacement that shifts it away from the x-ray structure. Analysis shows that this arises from the breakdown of a hydrogen bond network, which appears to result more from the absence of solvent that from the use of standard ionization states for the side chains of certain beta-barrel residues.

Full text

PDF
2094

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benson S. A., Occi J. L., Sampson B. A. Mutations that alter the pore function of the OmpF porin of Escherichia coli K12. J Mol Biol. 1988 Oct 20;203(4):961–970. doi: 10.1016/0022-2836(88)90121-0. [DOI] [PubMed] [Google Scholar]
  2. Björkstén J., Soares C. M., Nilsson O., Tapia O. On the stability and plastic properties of the interior L3 loop in R. capsulatus porin. A molecular dynamics study. Protein Eng. 1994 Apr;7(4):487–493. doi: 10.1093/protein/7.4.487. [DOI] [PubMed] [Google Scholar]
  3. Brooks C. L., 3rd, Karplus M. Solvent effects on protein motion and protein effects on solvent motion. Dynamics of the active site region of lysozyme. J Mol Biol. 1989 Jul 5;208(1):159–181. doi: 10.1016/0022-2836(89)90093-4. [DOI] [PubMed] [Google Scholar]
  4. Brunne R. M., Berndt K. D., Güntert P., Wüthrich K., van Gunsteren W. F. Structure and internal dynamics of the bovine pancreatic trypsin inhibitor in aqueous solution from long-time molecular dynamics simulations. Proteins. 1995 Sep;23(1):49–62. doi: 10.1002/prot.340230107. [DOI] [PubMed] [Google Scholar]
  5. Buehler L. K., Kusumoto S., Zhang H., Rosenbusch J. P. Plasticity of Escherichia coli porin channels. Dependence of their conductance on strain and lipid environment. J Biol Chem. 1991 Dec 25;266(36):24446–24450. [PubMed] [Google Scholar]
  6. Chiu S. W., Subramaniam S., Jakobsson E., McCammon J. A. Water and polypeptide conformations in the gramicidin channel. A molecular dynamics study. Biophys J. 1989 Aug;56(2):253–261. doi: 10.1016/S0006-3495(89)82671-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clément J. M., Hofnung M. Gene sequence of the lambda receptor, an outer membrane protein of E. coli K12. Cell. 1981 Dec;27(3 Pt 2):507–514. doi: 10.1016/0092-8674(81)90392-5. [DOI] [PubMed] [Google Scholar]
  8. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
  9. Dargent B., Rosenbusch J., Pattus F. Selectivity for maltose and maltodextrins of maltoporin, a pore-forming protein of E. coli outer membrane. FEBS Lett. 1987 Aug 10;220(1):136–142. doi: 10.1016/0014-5793(87)80891-8. [DOI] [PubMed] [Google Scholar]
  10. Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys. 1985 Mar;31(3):1695–1697. doi: 10.1103/physreva.31.1695. [DOI] [PubMed] [Google Scholar]
  11. Ichiye T., Karplus M. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins. 1991;11(3):205–217. doi: 10.1002/prot.340110305. [DOI] [PubMed] [Google Scholar]
  12. Jap B. K., Walian P. J. Biophysics of the structure and function of porins. Q Rev Biophys. 1990 Nov;23(4):367–403. doi: 10.1017/s003358350000559x. [DOI] [PubMed] [Google Scholar]
  13. Jeanteur D., Lakey J. H., Pattus F. The bacterial porin superfamily: sequence alignment and structure prediction. Mol Microbiol. 1991 Sep;5(9):2153–2164. doi: 10.1111/j.1365-2958.1991.tb02145.x. [DOI] [PubMed] [Google Scholar]
  14. Karplus M. Aspects of protein dynamics. Ann N Y Acad Sci. 1981;367:407–418. doi: 10.1111/j.1749-6632.1981.tb50581.x. [DOI] [PubMed] [Google Scholar]
  15. Karshikoff A., Spassov V., Cowan S. W., Ladenstein R., Schirmer T. Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol. 1994 Jul 22;240(4):372–384. doi: 10.1006/jmbi.1994.1451. [DOI] [PubMed] [Google Scholar]
  16. Komeiji Y., Uebayasi M., Yamato I. Molecular dynamics simulations of trp apo- and holorepressors: domain structure and ligand-protein interaction. Proteins. 1994 Nov;20(3):248–258. doi: 10.1002/prot.340200305. [DOI] [PubMed] [Google Scholar]
  17. Lakey J. H., Pattus F. The voltage-dependent activity of Escherichia coli porins in different planar bilayer reconstitutions. Eur J Biochem. 1989 Dec 8;186(1-2):303–308. doi: 10.1111/j.1432-1033.1989.tb15209.x. [DOI] [PubMed] [Google Scholar]
  18. Levy R. M., Sheridan R. P., Keepers J. W., Dubey G. S., Swaminathan S., Karplus M. Molecular dynamics of myoglobin at 298 degrees K. Results from a 300-ps computer simulation. Biophys J. 1985 Sep;48(3):509–518. doi: 10.1016/S0006-3495(85)83806-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mauro A., Blake M., Labarca P. Voltage gating of conductance in lipid bilayers induced by porin from outer membrane of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1071–1075. doi: 10.1073/pnas.85.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Misra R., Benson S. A. Genetic identification of the pore domain of the OmpC porin of Escherichia coli K-12. J Bacteriol. 1988 Aug;170(8):3611–3617. doi: 10.1128/jb.170.8.3611-3617.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mizuno T., Chou M. Y., Inouye M. A comparative study on the genes for three porins of the Escherichia coli outer membrane. DNA sequence of the osmoregulated ompC gene. J Biol Chem. 1983 Jun 10;258(11):6932–6940. [PubMed] [Google Scholar]
  22. Nikaido H. Transport across the bacterial outer membrane. J Bioenerg Biomembr. 1993 Dec;25(6):581–589. doi: 10.1007/BF00770245. [DOI] [PubMed] [Google Scholar]
  23. Pauptit R. A., Schirmer T., Jansonius J. N., Rosenbusch J. P., Parker M. W., Tucker A. D., Tsernoglou D., Weiss M. S., Schultz G. E. A common channel-forming motif in evolutionarily distant porins. J Struct Biol. 1991 Oct;107(2):136–145. doi: 10.1016/1047-8477(91)90017-q. [DOI] [PubMed] [Google Scholar]
  24. Romo T. D., Clarage J. B., Sorensen D. C., Phillips G. N., Jr Automatic identification of discrete substates in proteins: singular value decomposition analysis of time-averaged crystallographic refinements. Proteins. 1995 Aug;22(4):311–321. doi: 10.1002/prot.340220403. [DOI] [PubMed] [Google Scholar]
  25. Rosenbusch J. P. Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. J Biol Chem. 1974 Dec 25;249(24):8019–8029. [PubMed] [Google Scholar]
  26. Schiltz E., Kreusch A., Nestel U., Schulz G. E. Primary structure of porin from Rhodobacter capsulatus. Eur J Biochem. 1991 Aug 1;199(3):587–594. doi: 10.1111/j.1432-1033.1991.tb16158.x. [DOI] [PubMed] [Google Scholar]
  27. Schindler H., Rosenbusch J. P. Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3751–3755. doi: 10.1073/pnas.75.8.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schindler H., Rosenbusch J. P. Matrix protein in planar membranes: clusters of channels in a native environment and their functional reassembly. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2302–2306. doi: 10.1073/pnas.78.4.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schindler M., Rosenbusch J. P. Structural transitions of porin, a transmembrane protein. FEBS Lett. 1984 Jul 23;173(1):85–89. doi: 10.1016/0014-5793(84)81022-4. [DOI] [PubMed] [Google Scholar]
  30. Schirmer T., Keller T. A., Wang Y. F., Rosenbusch J. P. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science. 1995 Jan 27;267(5197):512–514. doi: 10.1126/science.7824948. [DOI] [PubMed] [Google Scholar]
  31. Swaminathan S., Ichiye T., van Gunsteren W., Karplus M. Time dependence of atomic fluctuations in proteins: analysis of local and collective motions in bovine pancreatic trypsin inhibitor. Biochemistry. 1982 Oct 12;21(21):5230–5241. doi: 10.1021/bi00264a019. [DOI] [PubMed] [Google Scholar]
  32. Weiss M. S., Abele U., Weckesser J., Welte W., Schiltz E., Schulz G. E. Molecular architecture and electrostatic properties of a bacterial porin. Science. 1991 Dec 13;254(5038):1627–1630. doi: 10.1126/science.1721242. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES