Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 May;72(5):2143–2150. doi: 10.1016/S0006-3495(97)78857-X

Plant K+ channel alpha-subunits assemble indiscriminately.

I Dreyer 1, S Antunes 1, T Hoshi 1, B Müller-Röber 1, K Palme 1, O Pongs 1, B Reintanz 1, R Hedrich 1
PMCID: PMC1184408  PMID: 9129816

Abstract

In plants a large diversity of inwardly rectifying K+ channels (K(in) channels) has been observed between tissues and species. However, only three different types of voltage-dependent plant K+ uptake channel subfamilies have been cloned so far; they relate either to KAT1, AKT1, or AtKC1. To explore the mechanisms underlying the channel diversity, we investigated the assembly of plant inwardly rectifying alpha-subunits. cRNA encoding five different K+ channel alpha-subunits of the three subfamilies (KAT1, KST1, AKT1, SKT1, and AtKC1) which were isolated from different tissues, species, and plant families (Arabidopsis thaliana and Solanum tuberosum) was reciprocally co-injected into Xenopus oocytes. We identified plant K+ channels as multimers. Moreover, using K+ channel mutants expressing different sensitivities to voltage, Cs+, Ca2+, and H+, we could prove heteromers on the basis of their altered voltage and modulator susceptibility. We discovered that, in contrast to animal K+ channel alpha-subunits, functional aggregates of plant K(in) channel alpha-subunits assembled indiscriminately. Interestingly, AKT-type channels from A. thaliana and S. tuberosum, which as homomers were electrically silent in oocytes after co-expression, mediated K+ currents. Our findings suggest that K+ channel diversity in plants results from nonselective heteromerization of different alpha-subunits, and thus depends on the spatial segregation of individual alpha-subunit pools and the degree of temporal overlap and kinetics of expression.

Full text

PDF
2143

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. A., Huprikar S. S., Kochian L. V., Lucas W. J., Gaber R. F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3736–3740. doi: 10.1073/pnas.89.9.3736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basset M., Conejero G., Lepetit M., Fourcroy P., Sentenac H. Organization and expression of the gene coding for the potassium transport system AKT1 of Arabidopsis thaliana. Plant Mol Biol. 1995 Dec;29(5):947–958. doi: 10.1007/BF00014968. [DOI] [PubMed] [Google Scholar]
  3. Becker D., Dreyer I., Hoth S., Reid J. D., Busch H., Lehnen M., Palme K., Hedrich R. Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8123–8128. doi: 10.1073/pnas.93.15.8123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bertl A., Anderson J. A., Slayman C. L., Gaber R. F. Use of Saccharomyces cerevisiae for patch-clamp analysis of heterologous membrane proteins: characterization of Kat1, an inward-rectifying K+ channel from Arabidopsis thaliana, and comparison with endogeneous yeast channels and carriers. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2701–2705. doi: 10.1073/pnas.92.7.2701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bertl A., Anderson J. A., Slayman C. L., Sentenac H., Gaber R. F. Inward and outward rectifying potassium currents in Saccharomyces cerevisiae mediated by endogenous and heterelogously expressed ion channels. Folia Microbiol (Praha) 1994;39(6):507–509. doi: 10.1007/BF02814074. [DOI] [PubMed] [Google Scholar]
  6. Cao Y., Ward J. M., Kelly W. B., Ichida A. M., Gaber R. F., Anderson J. A., Uozumi N., Schroeder J. I., Crawford N. M. Multiple genes, tissue specificity, and expression-dependent modulationcontribute to the functional diversity of potassium channels in Arabidopsis thaliana. Plant Physiol. 1995 Nov;109(3):1093–1106. doi: 10.1104/pp.109.3.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen M. L., Hoshi T., Wu C. F. Heteromultimeric interactions among K+ channel subunits from Shaker and eag families in Xenopus oocytes. Neuron. 1996 Sep;17(3):535–542. doi: 10.1016/s0896-6273(00)80185-3. [DOI] [PubMed] [Google Scholar]
  8. Christie M. J., North R. A., Osborne P. B., Douglass J., Adelman J. P. Heteropolymeric potassium channels expressed in Xenopus oocytes from cloned subunits. Neuron. 1990 Mar;4(3):405–411. doi: 10.1016/0896-6273(90)90052-h. [DOI] [PubMed] [Google Scholar]
  9. Covarrubias M., Wei A. A., Salkoff L. Shaker, Shal, Shab, and Shaw express independent K+ current systems. Neuron. 1991 Nov;7(5):763–773. doi: 10.1016/0896-6273(91)90279-9. [DOI] [PubMed] [Google Scholar]
  10. Doupnik C. A., Davidson N., Lester H. A. The inward rectifier potassium channel family. Curr Opin Neurobiol. 1995 Jun;5(3):268–277. doi: 10.1016/0959-4388(95)80038-7. [DOI] [PubMed] [Google Scholar]
  11. Gaymard F., Cerutti M., Horeau C., Lemaillet G., Urbach S., Ravallec M., Devauchelle G., Sentenac H., Thibaud J. B. The baculovirus/insect cell system as an alternative to Xenopus oocytes. First characterization of the AKT1 K+ channel from Arabidopsis thaliana. J Biol Chem. 1996 Sep 13;271(37):22863–22870. doi: 10.1074/jbc.271.37.22863. [DOI] [PubMed] [Google Scholar]
  12. Glowatzki E., Fakler G., Brändle U., Rexhausen U., Zenner H. P., Ruppersberg J. P., Fakler B. Subunit-dependent assembly of inward-rectifier K+ channels. Proc Biol Sci. 1995 Aug 22;261(1361):251–261. doi: 10.1098/rspb.1995.0145. [DOI] [PubMed] [Google Scholar]
  13. Hedrich R., Moran O., Conti F., Busch H., Becker D., Gambale F., Dreyer I., Küch A., Neuwinger K., Palme K. Inward rectifier potassium channels in plants differ from their animal counterparts in response to voltage and channel modulators. Eur Biophys J. 1995;24(2):107–115. doi: 10.1007/BF00211406. [DOI] [PubMed] [Google Scholar]
  14. Heinemann S., Rettig J., Scott V., Parcej D. N., Lorra C., Dolly J., Pongs O. The inactivation behaviour of voltage-gated K-channels may be determined by association of alpha- and beta-subunits. J Physiol Paris. 1994;88(3):173–180. doi: 10.1016/0928-4257(94)90003-5. [DOI] [PubMed] [Google Scholar]
  15. Hoshi T. Regulation of voltage dependence of the KAT1 channel by intracellular factors. J Gen Physiol. 1995 Mar;105(3):309–328. doi: 10.1085/jgp.105.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hugnot J. P., Salinas M., Lesage F., Guillemare E., de Weille J., Heurteaux C., Mattéi M. G., Lazdunski M. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J. 1996 Jul 1;15(13):3322–3331. [PMC free article] [PubMed] [Google Scholar]
  17. Isacoff E. Y., Jan Y. N., Jan L. Y. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature. 1990 Jun 7;345(6275):530–534. doi: 10.1038/345530a0. [DOI] [PubMed] [Google Scholar]
  18. Jan L. Y., Jan Y. N. Potassium channels and their evolving gates. Nature. 1994 Sep 8;371(6493):119–122. doi: 10.1038/371119a0. [DOI] [PubMed] [Google Scholar]
  19. Ketchum K. A., Slayman C. W. Isolation of an ion channel gene from Arabidopsis thaliana using the H5 signature sequence from voltage-dependent K+ channels. FEBS Lett. 1996 Jan 2;378(1):19–26. doi: 10.1016/0014-5793(95)01417-9. [DOI] [PubMed] [Google Scholar]
  20. Lagarde D., Basset M., Lepetit M., Conejero G., Gaymard F., Astruc S., Grignon C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 1996 Feb;9(2):195–203. doi: 10.1046/j.1365-313x.1996.09020195.x. [DOI] [PubMed] [Google Scholar]
  21. Li M., Jan Y. N., Jan L. Y. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science. 1992 Aug 28;257(5074):1225–1230. doi: 10.1126/science.1519059. [DOI] [PubMed] [Google Scholar]
  22. Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
  23. Ludwig J., Terlau H., Wunder F., Brüggemann A., Pardo L. A., Marquardt A., Stühmer W., Pongs O. Functional expression of a rat homologue of the voltage gated either á go-go potassium channel reveals differences in selectivity and activation kinetics between the Drosophila channel and its mammalian counterpart. EMBO J. 1994 Oct 3;13(19):4451–4458. doi: 10.1002/j.1460-2075.1994.tb06767.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature. 1991 Mar 21;350(6315):232–235. doi: 10.1038/350232a0. [DOI] [PubMed] [Google Scholar]
  25. Marten I., Gaymard F., Lemaillet G., Thibaud J. B., Sentenac H., Hedrich R. Functional expression of the plant K+ channel KAT1 in insect cells. FEBS Lett. 1996 Feb 19;380(3):229–232. doi: 10.1016/0014-5793(96)00042-7. [DOI] [PubMed] [Google Scholar]
  26. Müller-Röber B., Ellenberg J., Provart N., Willmitzer L., Busch H., Becker D., Dietrich P., Hoth S., Hedrich R. Cloning and electrophysiological analysis of KST1, an inward rectifying K+ channel expressed in potato guard cells. EMBO J. 1995 Jun 1;14(11):2409–2416. doi: 10.1002/j.1460-2075.1995.tb07238.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nakamura R. L., McKendree W. L., Jr, Hirsch R. E., Sedbrook J. C., Gaber R. F., Sussman M. R. Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol. 1995 Oct;109(2):371–374. doi: 10.1104/pp.109.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pessia M., Tucker S. J., Lee K., Bond C. T., Adelman J. P. Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels. EMBO J. 1996 Jun 17;15(12):2980–2987. [PMC free article] [PubMed] [Google Scholar]
  29. Ruppersberg J. P., Stocker M., Pongs O., Heinemann S. H., Frank R., Koenen M. Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature. 1991 Aug 22;352(6337):711–714. doi: 10.1038/352711a0. [DOI] [PubMed] [Google Scholar]
  30. Salkoff L., Baker K., Butler A., Covarrubias M., Pak M. D., Wei A. An essential 'set' of K+ channels conserved in flies, mice and humans. Trends Neurosci. 1992 May;15(5):161–166. doi: 10.1016/0166-2236(92)90165-5. [DOI] [PubMed] [Google Scholar]
  31. Schachtman D. P., Schroeder J. I., Lucas W. J., Anderson J. A., Gaber R. F. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science. 1992 Dec 4;258(5088):1654–1658. doi: 10.1126/science.8966547. [DOI] [PubMed] [Google Scholar]
  32. Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J. M., Gaymard F., Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science. 1992 May 1;256(5057):663–665. doi: 10.1126/science.1585180. [DOI] [PubMed] [Google Scholar]
  33. Shahidullah M., Hoshi N., Yokoyama S., Higashida H. Microheterogeneity in heteromultimeric assemblies formed by Shaker (Kv1) and Shaw (Kv3) subfamilies of voltage-gated K+ channels. Proc Biol Sci. 1995 Sep 22;261(1362):309–317. doi: 10.1098/rspb.1995.0152. [DOI] [PubMed] [Google Scholar]
  34. Shen N. V., Chen X., Boyer M. M., Pfaffinger P. J. Deletion analysis of K+ channel assembly. Neuron. 1993 Jul;11(1):67–76. doi: 10.1016/0896-6273(93)90271-r. [DOI] [PubMed] [Google Scholar]
  35. Tang H., Vasconcelos A. C., Berkowitz G. A. Evidence that plant K+ channel proteins have two different types of subunits. Plant Physiol. 1995 Sep;109(1):327–330. doi: 10.1104/pp.109.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Véry A. A., Bosseux C., Gaymard F., Sentenac H., Thibaud J. B. Level of expression in Xenopus oocytes affects some characteristics of a plant inward-rectifying voltage-gated K+ channel. Pflugers Arch. 1994 Oct;428(3-4):422–424. doi: 10.1007/BF00724528. [DOI] [PubMed] [Google Scholar]
  37. Véry A. A., Gaymard F., Bosseux C., Sentenac H., Thibaud J. B. Expression of a cloned plant K+ channel in Xenopus oocytes: analysis of macroscopic currents. Plant J. 1995 Feb;7(2):321–332. doi: 10.1046/j.1365-313x.1995.7020321.x. [DOI] [PubMed] [Google Scholar]
  38. Warmke J., Drysdale R., Ganetzky B. A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science. 1991 Jun 14;252(5012):1560–1562. doi: 10.1126/science.1840699. [DOI] [PubMed] [Google Scholar]
  39. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang J., Jan Y. N., Jan L. Y. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron. 1995 Dec;15(6):1441–1447. doi: 10.1016/0896-6273(95)90021-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES