Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Mar;72(3):1204–1219. doi: 10.1016/S0006-3495(97)78768-X

Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis.

L J Hayward 1, R H Brown Jr 1, S C Cannon 1
PMCID: PMC1184504  PMID: 9138567

Abstract

Several heritable forms of myotonia and hyperkalemic periodic paralysis (HyperPP) are caused by missense mutations in the alpha subunit of the skeletal muscle Na channel (SkM1). These mutations impair fast inactivation or shift activation toward hyperpolarized potentials, inducing persistent Na currents that may cause muscle depolarization, myotonia, and onset of weakness. It has been proposed that the aberrant Na current and resulting weakness will be sustained only if Na channel slow inactivation is also impaired. We therefore measured slow inactivation for wild-type and five mutant Na channels constructed in the rat skeletal muscle isoform (rSkM1) and expressed in HEK cells. Two common HyperPP mutations (T698M in domain II-S5 and M1585V in IV-S6) had defective slow inactivation. This defect reduced use-dependent inhibition of Na currents elicited during 50-Hz stimulation. A rare HyperPP mutation (M1353V in IV-S1) and mutations within the domain III-IV linker that cause myotonia (G1299E) or myotonia plus weakness (T1306M) did not impair slow inactivation. We also observed that slow inactivation of wild-type rSkM1 was incomplete; therefore it is possible that stable membrane depolarization and subsequent muscle weakness may be caused solely by defects in fast inactivation or activation. Model simulations showed that abnormal slow inactivation, although not required for expression of a paralytic phenotype, may accentuate muscle membrane depolarization, paralysis, and sensitivity to hyperkalemia.

Full text

PDF
1204

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich R. W., Stevens C. F. Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells. J Neurosci. 1987 Feb;7(2):418–431. doi: 10.1523/JNEUROSCI.07-02-00418.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almers W., Stanfield P. R., Stühmer W. Slow changes in currents through sodium channels in frog muscle membrane. J Physiol. 1983 Jun;339:253–271. doi: 10.1113/jphysiol.1983.sp014715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balser J. R., Nuss H. B., Chiamvimonvat N., Pérez-García M. T., Marban E., Tomaselli G. F. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels. J Physiol. 1996 Jul 15;494(Pt 2):431–442. doi: 10.1113/jphysiol.1996.sp021503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cannon S. C., Brown R. H., Jr, Corey D. P. A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation. Neuron. 1991 Apr;6(4):619–626. doi: 10.1016/0896-6273(91)90064-7. [DOI] [PubMed] [Google Scholar]
  5. Cannon S. C., Brown R. H., Jr, Corey D. P. Theoretical reconstruction of myotonia and paralysis caused by incomplete inactivation of sodium channels. Biophys J. 1993 Jul;65(1):270–288. doi: 10.1016/S0006-3495(93)81045-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cannon S. C., Hayward L. J., Beech J., Brown R. H., Jr Sodium channel inactivation is impaired in equine hyperkalemic periodic paralysis. J Neurophysiol. 1995 May;73(5):1892–1899. doi: 10.1152/jn.1995.73.5.1892. [DOI] [PubMed] [Google Scholar]
  7. Cannon S. C. Ion-channel defects and aberrant excitability in myotonia and periodic paralysis. Trends Neurosci. 1996 Jan;19(1):3–10. doi: 10.1016/0166-2236(96)81859-5. [DOI] [PubMed] [Google Scholar]
  8. Cannon S. C., McClatchey A. I., Gusella J. F. Modification of the Na+ current conducted by the rat skeletal muscle alpha subunit by coexpression with a human brain beta subunit. Pflugers Arch. 1993 Apr;423(1-2):155–157. doi: 10.1007/BF00374974. [DOI] [PubMed] [Google Scholar]
  9. Cannon S. C., Strittmatter S. M. Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron. 1993 Feb;10(2):317–326. doi: 10.1016/0896-6273(93)90321-h. [DOI] [PubMed] [Google Scholar]
  10. Chahine M., George A. L., Jr, Zhou M., Ji S., Sun W., Barchi R. L., Horn R. Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron. 1994 Feb;12(2):281–294. doi: 10.1016/0896-6273(94)90271-2. [DOI] [PubMed] [Google Scholar]
  11. Cummins T. R., Sigworth F. J. Impaired slow inactivation in mutant sodium channels. Biophys J. 1996 Jul;71(1):227–236. doi: 10.1016/S0006-3495(96)79219-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cummins T. R., Zhou J., Sigworth F. J., Ukomadu C., Stephan M., Ptácek L. J., Agnew W. S. Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis. Neuron. 1993 Apr;10(4):667–678. doi: 10.1016/0896-6273(93)90168-q. [DOI] [PubMed] [Google Scholar]
  13. Featherstone D. E., Richmond J. E., Ruben P. C. Interaction between fast and slow inactivation in Skm1 sodium channels. Biophys J. 1996 Dec;71(6):3098–3109. doi: 10.1016/S0006-3495(96)79504-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hayward L. J., Brown R. H., Jr, Cannon S. C. Inactivation defects caused by myotonia-associated mutations in the sodium channel III-IV linker. J Gen Physiol. 1996 May;107(5):559–576. doi: 10.1085/jgp.107.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jurman M. E., Boland L. M., Liu Y., Yellen G. Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques. 1994 Nov;17(5):876–881. [PubMed] [Google Scholar]
  16. Lehmann-Horn F., Rüdel R., Ricker K. Non-dystrophic myotonias and periodic paralyses. A European Neuromuscular Center Workshop held 4-6 October 1992, Ulm, Germany. Neuromuscul Disord. 1993 Mar;3(2):161–168. doi: 10.1016/0960-8966(93)90009-9. [DOI] [PubMed] [Google Scholar]
  17. Lerche H., Heine R., Pika U., George A. L., Jr, Mitrovic N., Browatzki M., Weiss T., Rivet-Bastide M., Franke C., Lomonaco M. Human sodium channel myotonia: slowed channel inactivation due to substitutions for a glycine within the III-IV linker. J Physiol. 1993 Oct;470:13–22. doi: 10.1113/jphysiol.1993.sp019843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lerche H., Mitrovic N., Dubowitz V., Lehmann-Horn F. Paramyotonia congenita: the R1448P Na+ channel mutation in adult human skeletal muscle. Ann Neurol. 1996 May;39(5):599–608. doi: 10.1002/ana.410390509. [DOI] [PubMed] [Google Scholar]
  19. McClatchey A. I., Cannon S. C., Slaugenhaupt S. A., Gusella J. F. The cloning and expression of a sodium channel beta 1-subunit cDNA from human brain. Hum Mol Genet. 1993 Jun;2(6):745–749. doi: 10.1093/hmg/2.6.745. [DOI] [PubMed] [Google Scholar]
  20. Mitrović N., George A. L., Jr, Heine R., Wagner S., Pika U., Hartlaub U., Zhou M., Lerche H., Fahlke C., Lehmann-Horn F. K(+)-aggravated myotonia: destabilization of the inactivated state of the human muscle Na+ channel by the V1589M mutation. J Physiol. 1994 Aug 1;478(Pt 3):395–402. doi: 10.1113/jphysiol.1994.sp020260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mitrović N., George A. L., Jr, Lerche H., Wagner S., Fahlke C., Lehmann-Horn F. Different effects on gating of three myotonia-causing mutations in the inactivation gate of the human muscle sodium channel. J Physiol. 1995 Aug 15;487(1):107–114. doi: 10.1113/jphysiol.1995.sp020864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ptacek L. J., Gouw L., Kwieciński H., McManis P., Mendell J. R., Barohn R. J., George A. L., Jr, Barchi R. L., Robertson M., Leppert M. F. Sodium channel mutations in paramyotonia congenita and hyperkalemic periodic paralysis. Ann Neurol. 1993 Mar;33(3):300–307. doi: 10.1002/ana.410330312. [DOI] [PubMed] [Google Scholar]
  23. Rudy B. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J Physiol. 1978 Oct;283:1–21. doi: 10.1113/jphysiol.1978.sp012485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ruff R. L., Simoncini L., Stühmer W. Comparison between slow sodium channel inactivation in rat slow- and fast-twitch muscle. J Physiol. 1987 Feb;383:339–348. doi: 10.1113/jphysiol.1987.sp016412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ruff R. L. Slow Na+ channel inactivation must be disrupted to evoke prolonged depolarization-induced paralysis. Biophys J. 1994 Feb;66(2 Pt 1):542–542. doi: 10.1016/s0006-3495(94)80807-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Simoncini L., Stühmer W. Slow sodium channel inactivation in rat fast-twitch muscle. J Physiol. 1987 Feb;383:327–337. doi: 10.1113/jphysiol.1987.sp016411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tahmoush A. J., Schaller K. L., Zhang P., Hyslop T., Heiman-Patterson T., Caldwell J. H. Muscle sodium channel inactivation defect in paramyotonia congenita with the thr1313met mutation. Neuromuscul Disord. 1994 Sep-Nov;4(5-6):447–454. doi: 10.1016/0960-8966(94)90083-3. [DOI] [PubMed] [Google Scholar]
  28. Trimmer J. S., Cooperman S. S., Tomiko S. A., Zhou J. Y., Crean S. M., Boyle M. B., Kallen R. G., Sheng Z. H., Barchi R. L., Sigworth F. J. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron. 1989 Jul;3(1):33–49. doi: 10.1016/0896-6273(89)90113-x. [DOI] [PubMed] [Google Scholar]
  29. Ukomadu C., Zhou J., Sigworth F. J., Agnew W. S. muI Na+ channels expressed transiently in human embryonic kidney cells: biochemical and biophysical properties. Neuron. 1992 Apr;8(4):663–676. doi: 10.1016/0896-6273(92)90088-u. [DOI] [PubMed] [Google Scholar]
  30. Valenzuela C., Bennett P. B., Jr Gating of cardiac Na+ channels in excised membrane patches after modification by alpha-chymotrypsin. Biophys J. 1994 Jul;67(1):161–171. doi: 10.1016/S0006-3495(94)80465-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. West J. W., Patton D. E., Scheuer T., Wang Y., Goldin A. L., Catterall W. A. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10910–10914. doi: 10.1073/pnas.89.22.10910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yang N., Ji S., Zhou M., Ptácek L. J., Barchi R. L., Horn R., George A. L., Jr Sodium channel mutations in paramyotonia congenita exhibit similar biophysical phenotypes in vitro. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12785–12789. doi: 10.1073/pnas.91.26.12785. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES