Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1969 Oct;114(4):827–832. doi: 10.1042/bj1140827

The chemical synthesis of 1-O-(indol-3′-ylacetyl)-β-d-glucopyranose. The higher activity of the glucoside in comparison with exogenous indol-3-ylacetic acid in plant-section elongation tests

D Keglević 1, M Pokorny 1
PMCID: PMC1184971  PMID: 5343792

Abstract

1. The synthesis of 1-O-(indol-3′-ylacetyl)-β-d-glucopyranose via the fully benzylated 1-O-(indol-3′-ylacetyl)-d-glucopyranose is described. The configuration of the free ester glucoside was confirmed by complete hydrolysis with β-glucosidase and by the n.m.r. spectrum of the tetra-acetyl derivative. 2. The growth-promoting effect of the glucoside in Avena coleoptile- and pea stem-section tests distinctly exceeds the responses stimulated by equimolar amounts of indol-3-ylacetic acid or equimolar mixtures of indol-3-ylacetic acid and glucose at all concentrations investigated. Time-sequence experiments revealed that the sections stimulated by the glucoside exhibit a markedly greater rate of elongation than those promoted by indol-3-ylacetic acid. 3. 1-O-(Indol-3′-ylacetyl)-β-d-glucopyranose was isolated from intact Avena coleoptiles. 4. According to the results, the conjugation of indol-3-ylacetic acid with glucose could not be considered merely as a detoxication mechanism for indol-3-ylacetic acid in plant tissues.

Full text

PDF
827

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreae W. A., Good N. E. The Formation of Indoleacetylaspartic Acid in Pea Seedlings. Plant Physiol. 1955 Jul;30(4):380–382. doi: 10.1104/pp.30.4.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARUAH P., SWAIN T. Beta-Glycosidase of potato. Biochem J. 1957 Jun;66(2):321–323. doi: 10.1042/bj0660321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Good N. E., Andreae W. A., Ysselstein M. W. Studies on 3-Indoleacetic Acid Metabolism. II. Some Products of the Metabolism of Exogenous Indoleacetic Acid in Plant Tissues. Plant Physiol. 1956 May;31(3):231–235. doi: 10.1104/pp.31.3.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Srivastava B. I. Ether-Soluble & Ether-Insoluble Auxins from Immature Corn Kernels. Plant Physiol. 1963 Jul;38(4):473–478. doi: 10.1104/pp.38.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. ZENK M. H. I-(Indole-3-acetyl)-beta-D-glucose, a new compound in the metabolism of indole-3-acetic acid in plants. Nature. 1961 Jul 29;191:493–494. doi: 10.1038/191493a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES