Abstract
1. Incubation of a rat liver homogenate with 3R-[2-14C,(5R)-5-3H1]mevalonic acid gave cholesterol with 3H/14C atomic ratio 6:5. 2. Conversion of the labelled cholesterol into 3β-acetoxy-6-nitrocholest-5-ene or cholest-4-ene-3,6-dione resulted in the loss of one tritium atom from C-6. 3. These results show that during cholesterol biosynthesis the 6α-hydrogen atom of a precursor sterol is eliminated during formation of the C-5–C-6 double bond. 4. Incorporation of 3R-[2-14C,(5R)-5-3H1]mevalonic acid into the sterols of larch (Larix decidua) leaves gave labelled cycloartenol and β-sitosterol with 3H/14C atomic ratios 6:6 and 6:5 respectively. 5. One tritium atom was lost from C-6 on conversion of the labelled β-sitosterol into either 3β-acetoxy-6-nitrostigmast-5-ene or stigmast-4-ene-3,6-dione, demonstrating that formation of the C-5–C-6 double bond of phytosterols also involves the elimination of the 6α-hydrogen atom of a precursor sterol. 6. The 3R-[2-14C,(5R)-5-3H1]mevalonic acid was also incorporated by larch (L. decidua) leaves into a sterol that co-chromatographed with 28-isofucosterol. Confirmation that the radioactivity was associated with 28-isofucosterol was obtained by co-crystallization with carrier 28-isofucosterol and ozonolysis of the acetate to give radioactively labelled 24-oxocholesteryl acetate. 7. The significance of these results to phytosterol biosynthesis is discussed.
Full text
PDF![885](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d723/1184980/9d9f7c08d86e/biochemj00693-0228.png)
![886](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d723/1184980/0d7265ad6851/biochemj00693-0229.png)
![887](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d723/1184980/db3c9ac59e83/biochemj00693-0230.png)
![888](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d723/1184980/a927ffc209ae/biochemj00693-0231.png)
![889](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d723/1184980/23286e299c8c/biochemj00693-0232.png)
![890](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d723/1184980/5151cec49dd8/biochemj00693-0233.png)
![891](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d723/1184980/c89da9de2274/biochemj00693-0234.png)
![892](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d723/1184980/485c0580e7f6/biochemj00693-0235.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akhtar M., Marsh S. The stereochemistry of the hydrogen elimination in the biological conversion of cholest-7-en-3-beta-ol into cholesterol. Biochem J. 1967 Feb;102(2):462–467. doi: 10.1042/bj1020462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akhtar M., Parvez M. A. The mechanism of the elaboration of ring B in ergosterol biosynthesis. Biochem J. 1968 Jul;108(4):527–531. doi: 10.1042/bj1080527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akhtar M., Rahimtula A. D., Watkinson I. A., Wilton D. C., Munday K. A. The status of C-6, C-7, C-15 and C-16 hydrogen atoms in cholesterol biosynthesis. Eur J Biochem. 1969 May 1;9(1):107–111. doi: 10.1111/j.1432-1033.1969.tb00582.x. [DOI] [PubMed] [Google Scholar]
- BUCHER N. L., MCGARRAHAN K. The biosynthesis of cholesterol from acetate-1-C14 by cellular fractions of rat liver. J Biol Chem. 1956 Sep;222(1):1–15. [PubMed] [Google Scholar]
- Cornforth J. W., Cornforth R. H., Donninger C., Popják G. Studies on the biosynthesis of cholesterol XIX. Steric course of hydrogen eliminations and of C-C bond formations in squalene biosynthesis. Proc R Soc Lond B Biol Sci. 1966 Jan 18;163(993):492–514. doi: 10.1098/rspb.1966.0004. [DOI] [PubMed] [Google Scholar]
- Dempsey M. E. Pathways of enzymic synthesis and conversion to cholesterol of delta-5,7,24-cholestatrien-3 beta-ol and other naturally occurring sterols. J Biol Chem. 1965 Nov;240(11):4176–4188. [PubMed] [Google Scholar]
- Dewhurst S. M., Akhtar M. The conversion of cholest-7-en-3beta-ol into cholesterol. General comments on the mechanism of the introduction of double bonds in enzymic reactions. Biochem J. 1967 Dec;105(3):1187–1194. doi: 10.1042/bj1051187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donninger C., Popják G. Studies on the biosynthesis of cholesterol. 18. The stereospecificity of mevaldate reductase and the biosynthesis of asymmetrically labelled farnesyl pyrophosphate. Proc R Soc Lond B Biol Sci. 1966 Jan 18;163(993):465–491. doi: 10.1098/rspb.1966.0003. [DOI] [PubMed] [Google Scholar]
- Goad L. J., Goodwin T. W. Studies on phytosterol biosynthesis: the sterols of Larix decidua leaves. Eur J Biochem. 1967 May;1(3):357–362. doi: 10.1007/978-3-662-25813-2_49. [DOI] [PubMed] [Google Scholar]
- Goad L. J., Goodwin T. W. The biosynthesis of sterols in higher plants. Biochem J. 1966 Jun;99(3):735–746. doi: 10.1042/bj0990735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goad L. J., Hammam A. S., Dennis A., Goodwin T. W. Biosynthesis of the phytosterol side chain. Nature. 1966 Jun 25;210(5043):1322–1324. doi: 10.1038/2101322a0. [DOI] [PubMed] [Google Scholar]
- Lederer E. The origin and function of some methyl groups in branched-chain fatty acids, plant sterols and quinones. Biochem J. 1964 Dec;93(3):449–468. doi: 10.1042/bj0930449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paliokas A. M., Schroepfer G. J., Jr Stereospecificity in the enzymatic conversion of delta-7-cholesten-3-beta-ol to 7-dehydrocholesterol. J Biol Chem. 1968 Feb 10;243(3):453–464. [PubMed] [Google Scholar]
- Patterson G. W., Karlander E. P. Fucosterol Reduction to Clionasterol in vivo by Chlorella ellipsoidea. Plant Physiol. 1967 Nov;42(11):1651–1652. doi: 10.1104/pp.42.11.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popják G., Cornforth J. W. Substrate stereochemistry in squalene biosynthesis: The first Ciba medal lecture. Biochem J. 1966 Dec;101(3):553.b4–553568. [PMC free article] [PubMed] [Google Scholar]
- Rees H. H., Goad L. J., Goodwin T. W. Studies in phytosterol biosynthesis. Mechanism of biosynthesis of cycloartenol. Biochem J. 1968 Apr;107(3):417–426. doi: 10.1042/bj1070417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAMUELSSON B., GOODMAN D. S. STEREOCHEMISTRY AT THE CENTER OF SQUALENE DURING ITS BIOSYNTHESIS FROM FARNESYL PYROPHOSPHATE AND SUBSEQUENT CONVERSION TO CHOLESTEROL. J Biol Chem. 1964 Jan;239:98–101. [PubMed] [Google Scholar]
- SCHWENK E., WERTHESSEN N. T. Studies on the biosynthesis of cholesterol. III. Purification of C14-cholesterol from perfusions of livers and other organs. Arch Biochem Biophys. 1952 Oct;40(2):334–341. doi: 10.1016/0003-9861(52)90119-7. [DOI] [PubMed] [Google Scholar]
- Williams R. J., Britton G., Charlton J. M., Goodwin T. W. The stereospecific biosynthesis of phytoene and polyunsaturated carotenes. Biochem J. 1967 Sep;104(3):767–777. doi: 10.1042/bj1040767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilton D. C., Munday K. A., Skinner S. J., Akhtar M. The biological conversion of 7-dehydrocholesterol into cholesterol and comments on the reduction of double bonds. Biochem J. 1968 Feb;106(4):803–810. doi: 10.1042/bj1060803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Aller R. T., Chikamatsu H., de Souza N. J., John J. P., Nes W. R. The metabolic role of the 24-ethylidenecholesterols. Biochem Biophys Res Commun. 1968 Jun 10;31(5):842–844. doi: 10.1016/0006-291x(68)90640-2. [DOI] [PubMed] [Google Scholar]