Abstract
1. RNA synthesized by Escherichia coli during one-hundredth of the generation time contains two fractions distinguishable by hybridization with homologous DNA. One fraction, approximately 30% of the newly synthesized RNA, did not compete with ribosomal RNA, being apparently messenger RNA. The other fraction, approximately 70% of the newly made RNA, hybridized as ribosomal RNA. These values are comparable with previous estimates (McCarthy & Bolton, 1964; Pigott & Midgley, 1968). 2. Hybridization-competition experiments showed that the newly made RNA associated with 70s ribosomes and larger ribosome aggregates was a mixture of ribosomal RNA and messenger RNA, whereas that associated with nascent ribosomal subunits consisted exclusively of ribosomal RNA. This observation provides means by which newly synthesized ribosomal RNA can be isolated free from messenger RNA. 3. Newly made ribosomal RNA in nascent ribosomal subunits was sensitive to shear under conditions where ribosomal RNA in mature ribosomes was shear-resistant. Thus, when RNA was extracted from cells of E. coli disrupted by mechanical means, newly made ribosomal RNA appeared heterogeneous in size, sedimenting as a broad peak extending from 8s to 16s. 4. Newly synthesized ribosomal RNA in nascent ribosomal subunits was rapidly degraded in the presence of actinomycin D and during glucose starvation. 5. Newly synthesized ribosomal RNA stimulated amino acid incorporation in a system synthesizing protein in vitro to the same extent as the RNA which contained the messenger RNA fraction.
Full text
PDF![295](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bb/1185102/6bc6bdf217a6/biochemj00691-0167.png)
![296](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bb/1185102/40c6544b27a3/biochemj00691-0168.png)
![297](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bb/1185102/8cb36275900a/biochemj00691-0169.png)
![298](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bb/1185102/3ede9843e154/biochemj00691-0170.png)
![299](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bb/1185102/979acbca23a8/biochemj00691-0171.png)
![300](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bb/1185102/1050d2fc65e8/biochemj00691-0172.png)
![301](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bb/1185102/8613df70f463/biochemj00691-0173.png)
![302](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bb/1185102/d1a6dbba59d8/biochemj00691-0174.png)
![303](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bb/1185102/75cd82813488/biochemj00691-0175.png)
![304](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bb/1185102/5697a0ca5317/biochemj00691-0176.png)
![305](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bb/1185102/080c4680bf2f/biochemj00691-0177.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ACS G., REICH E., VALANJU S. RNA METABOLISM OF B. SUBTILIS. EFFECTS OF ACTINOMYCIN. Biochim Biophys Acta. 1963 Sep 17;76:68–79. [PubMed] [Google Scholar]
- ARTMAN M., ENGELBERG H. BREAKDOWN OF RAPIDLY LABELLED RIBONUCLEIC ACID IN ACTINOMYCIN-SENSITIVE SPHEROPLASTS OF ESCHERICHIA COLI DEVOID OF RIBONUCLEASE. Biochim Biophys Acta. 1965 Apr 19;95:687–690. doi: 10.1016/0005-2787(65)90530-7. [DOI] [PubMed] [Google Scholar]
- ARTMAN M., ENGELBERG H. DEGRADATION OF RAPIDLY-TURNED-OVER RIBONUCLEIC ACID TO ACID-SOLUBLE COMPOUNDS BY ESCHERICHIA COLI RIBOSOMES. Biochim Biophys Acta. 1964 Mar 23;80:517–520. doi: 10.1016/0926-6550(64)90158-6. [DOI] [PubMed] [Google Scholar]
- Artman M., Silman N., Engelberg H. The conformation of ribonucleic acids in Escherichia coli ribosomes. Inferences from the mode of action of ribonuclease II. Biochem J. 1967 Sep;104(3):878–887. doi: 10.1042/bj1040878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bremer H., Yuan D. RNA chain growth-rate in Escherichia coli. J Mol Biol. 1968 Dec 14;38(2):163–180. doi: 10.1016/0022-2836(68)90404-x. [DOI] [PubMed] [Google Scholar]
- Capecchi M. R. Cell-free protein synthesis programmed with R17 RNA: identification of two phage proteins. J Mol Biol. 1966 Oct 28;21(1):173–193. doi: 10.1016/0022-2836(66)90086-6. [DOI] [PubMed] [Google Scholar]
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darnell J. E., Jr Ribonucleic acids from animal cells. Bacteriol Rev. 1968 Sep;32(3):262–290. doi: 10.1128/br.32.3.262-290.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dresden M. H., Hoagland M. B. Polyribosomes of Escherichia coli. Breakdown during glucose starvation. J Biol Chem. 1967 Mar 10;242(5):1065–1068. [PubMed] [Google Scholar]
- Fry M., Artman M. Deoxyribonucleic acid-ribonucleic acid hybridization. Annealing and quantitative recovery of intact ribosomal ribonucleic acid molecules from hybrids. Biochem J. 1969 Nov;115(2):287–294. doi: 10.1042/bj1150287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fry M., Artman M. Sedimentation behaviour of rapidly labelled RNA from Escherichia coli. Nature. 1968 Feb 17;217(5129):661–664. doi: 10.1038/217661b0. [DOI] [PubMed] [Google Scholar]
- GOLDSTEIN A., GOLDSTEIN D. B., LOWNEY L. I. PROTEIN SYNTHESIS OF 0 DEGREES C IN ESCHERICHIA COLI. J Mol Biol. 1964 Jul;9:213–235. doi: 10.1016/s0022-2836(64)80102-9. [DOI] [PubMed] [Google Scholar]
- GOMATOS P. J., KRUG R. M., TAMM I. ENZYMIC SYNTHESIS OF RNA WITH REOVIRUS RNA AS TEMPLATE. I. CHARACTERISTICS OF THE REACTION CATALYZED BY THE RNA POLYMERASE FROM ESCHERICHIA COLI. J Mol Biol. 1964 Jul;9:193–207. doi: 10.1016/s0022-2836(64)80100-5. [DOI] [PubMed] [Google Scholar]
- GOMATOS P. J., TAMM I., DALES S., FRANKLIN R. M. Reovirus type 3: physical characteristics and interaction with L cells. Virology. 1962 Jul;17:441–454. doi: 10.1016/0042-6822(62)90139-3. [DOI] [PubMed] [Google Scholar]
- GORDON J., BOMAN H. G., ISAKSSON L. A. IN VIVO INHIBITION OF RNA METHYLATION IN THE PRESENCE OF CHLORAMPHENICOL. J Mol Biol. 1964 Sep;9:831–833. doi: 10.1016/s0022-2836(64)80190-x. [DOI] [PubMed] [Google Scholar]
- GORDON J., BOMAN H. G. STUDIES ON MICROBIAL RNA.II. TRANSFER OF METHYL GROUPS FROM METHIONINE TO THE RNA OF A RIBONUCLEOPROTEIN PARTICLE. J Mol Biol. 1964 Sep;9:638–653. doi: 10.1016/s0022-2836(64)80172-8. [DOI] [PubMed] [Google Scholar]
- GROS F., HIATT H., GILBERT W., KURLAND C. G., RISEBROUGH R. W., WATSON J. D. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature. 1961 May 13;190:581–585. doi: 10.1038/190581a0. [DOI] [PubMed] [Google Scholar]
- Godson G. N., Sinsheimer R. L. Use of Brij lysis as a general method to prepare polyribosomes from Escherichia coli. Biochim Biophys Acta. 1967 Dec 19;149(2):489–495. doi: 10.1016/0005-2787(67)90176-1. [DOI] [PubMed] [Google Scholar]
- JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
- KOHN A. Lysis of frozen and thawed cells of Escherichia coli by lysozyme and their conversion into spheroplasts. J Bacteriol. 1960 May;79:697–706. doi: 10.1128/jb.79.5.697-706.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEVINTHAL C., KEYNAN A., HIGA A. Messenger RNA turnover and protein synthesis in B. subtilis inhibited by actinomycin D. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1631–1638. doi: 10.1073/pnas.48.9.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leive L., Kollin V. Controlling EDTA treatment to produce permeable Escherichia coli with normal metabolic processes. Biochem Biophys Res Commun. 1967 Jul 21;28(2):229–236. doi: 10.1016/0006-291x(67)90434-2. [DOI] [PubMed] [Google Scholar]
- MATTHAEI J. H., NIRENBERG M. W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miall S. H., Walker I. O. Structural studies on ribosomes. I. The binding of proflavine to Escherichia coli ribosomes. Biochim Biophys Acta. 1967 Aug 22;145(1):82–95. [PubMed] [Google Scholar]
- Nakada D. Formation of ribosomes by a "relaxed" mutant of Escherichia coli. J Mol Biol. 1965 Jul;12(3):695–725. doi: 10.1016/s0022-2836(65)80322-9. [DOI] [PubMed] [Google Scholar]
- Osawa S., Otaka E., Itoh T., Fukui T. Biosynthesis of 50 s ribosomal subunit in Escherichia coli. J Mol Biol. 1969 Mar 28;40(3):321–351. doi: 10.1016/0022-2836(69)90158-2. [DOI] [PubMed] [Google Scholar]
- Pigott G. H., Midgley J. E. Characterization of rapidly labelled ribonucleic acid in Escherichia coli by deoxyribonucleic acid-ribonucleic acid hybridization. Biochem J. 1968 Nov;110(2):251–263. doi: 10.1042/bj1100251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ron E. Z., Kohler R. E., Davis B. D. Polysomes extracted from Escherichia coli by freeze-thaw-lysozyme lysis. Science. 1966 Sep 2;153(3740):1119–1120. doi: 10.1126/science.153.3740.1119. [DOI] [PubMed] [Google Scholar]
- SOFFER R. L., GROS F. EFFECTS OF DINITROPHENOL AND PROFLAVINE ON INFORMATION TRANSFER MECHANISMS IN ESCHERICHIA COLI; A STUDY IN VIVO AND IN VITRO. Biochim Biophys Acta. 1964 Jul 22;87:423–439. doi: 10.1016/0926-6550(64)90115-x. [DOI] [PubMed] [Google Scholar]
- SRINIVASAN P. R., BOREK E. ENZYMATIC ALTERATION OF NUCLEIC ACID STRUCTURE. Science. 1964 Aug 7;145(3632):548–553. doi: 10.1126/science.145.3632.548. [DOI] [PubMed] [Google Scholar]
- Semmel M., Huppert J. Interaction in vitro entre l'actinomycine D et le RNA ribosomal. Biochim Biophys Acta. 1965 Aug 10;103(4):702–704. [PubMed] [Google Scholar]
- Singer M. F., Leder P. Messenger RNA: an evaluation. Annu Rev Biochem. 1966;35:195–230. doi: 10.1146/annurev.bi.35.070166.001211. [DOI] [PubMed] [Google Scholar]
- Takanami M., Yan Y. The release of polypeptide chains from ribosomes in cell-free amino acid-incorporating systems by specific combinations of bases in synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1450–1458. doi: 10.1073/pnas.54.5.1450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILLSON C., GROS F. PROTEIN SYNTHESIS WITH AN ESCHERICHIA COLI SYSTEM IN VITRO. Biochim Biophys Acta. 1964 Mar 23;80:478–496. doi: 10.1016/0926-6550(64)90151-3. [DOI] [PubMed] [Google Scholar]
- Waring M. J. Drugs which affect the structure and function of DNA. Nature. 1968 Sep 28;219(5161):1320–1325. doi: 10.1038/2191320a0. [DOI] [PubMed] [Google Scholar]
- Zimmermann R. A., Levinthal C. Messenger RNA and RNA transcription time. J Mol Biol. 1967 Dec 14;30(2):349–370. [PubMed] [Google Scholar]