Abstract
1. Ornithine δ-transaminase (l-ornithine–2-oxo acid aminotransferase, EC 2.6.1.13) and Δ1-pyrroline-5-carboxylate reductase [l-proline-NAD(P) 5-oxidoreductase, EC 1.5.1.2] were demonstrated in fat-body and flight-muscle tissues of the silkmoth Hyalophora gloveri. Arginase (l-arginine ureohydrolase, EC 3.5.3.1) is also present in these tissues. 2. Arginase, ornithine transaminase and pyrroline-carboxylate reductase are generally considered to make up the catabolic pathway for the conversion of arginine into proline. The conversion of l-[U-14C]arginine into [14C]proline by intact fat-body tissue was used to show that the enzymes in insect fat body also function in this capacity. 3. Of the three enzymes of the catabolic pathway, only arginase increased during adult development and the increase coincided with the emergence of the winged adult moth. Since proline appears to be a major substrate utilized in insect flight metabolism, the increase in arginase activity at this stage suggests a major role for arginase in proline formation.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brosemer R. W., Veerabhadrappa P. S. Pathway of proline oxidation in insect flight muscle. Biochim Biophys Acta. 1965 Oct 25;110(1):102–112. doi: 10.1016/s0926-6593(65)80099-6. [DOI] [PubMed] [Google Scholar]
- CHINARD F. P. Photometric estimation of proline and ornithine. J Biol Chem. 1952 Nov;199(1):91–95. [PubMed] [Google Scholar]
- Eliasson E. E., Strecker H. J. Arginase activity during the growth cycle of Chang's liver cells. J Biol Chem. 1966 Dec 25;241(24):5757–5763. [PubMed] [Google Scholar]
- GARCIA I., ROCHE J., TIXIER M. Sur le métabolisme hydrolytique de l'arginine chez les insectes et sa signification métabolique. C R Seances Soc Biol Fil. 1956 Sep 10;150(4):632–634. [PubMed] [Google Scholar]
- HINTON T. The effects of arginine, ornithine and citrulline on the growth of Drosophila. Arch Biochem Biophys. 1956 May;62(1):78–85. doi: 10.1016/0003-9861(56)90089-3. [DOI] [PubMed] [Google Scholar]
- Hill D. L., Chambers P. The biosynthesis of proline by Tetrahymena pyriformis. Biochim Biophys Acta. 1967 Nov 28;148(2):435–447. doi: 10.1016/0304-4165(67)90140-7. [DOI] [PubMed] [Google Scholar]
- KATUNUMA N., MATSUDA Y., TOMINO I. STUDIES ON ORNITHINE-KETOACID TRANSAMINASE. I. PURIFICATION AND PROPERTIES. J Biochem. 1964 Dec;56:499–503. doi: 10.1093/oxfordjournals.jbchem.a128027. [DOI] [PubMed] [Google Scholar]
- KATUNUMA N., OKADA M., MATSUZAWA T., OTSUKA Y. STUDIES ON ORNITHINE KETOACID TRANSAMINASE. II. ROLE IN METABOLIC PATHWAY. J Biochem. 1965 Mar;57:445–449. doi: 10.1093/oxfordjournals.jbchem.a128099. [DOI] [PubMed] [Google Scholar]
- KRISHNAKUMARAN A., SCHNEIDERMAN H. A. DEVELOPMENTAL CAPACITIES OF THE CELLS OF AN ADULT MOTH. J Exp Zool. 1964 Dec;157:293–305. doi: 10.1002/jez.1401570302. [DOI] [PubMed] [Google Scholar]
- Laishley E. J., Bernlohr R. W. Regulation of arginine and proline catabolism in Bacillus licheniformis. J Bacteriol. 1968 Aug;96(2):322–329. doi: 10.1128/jb.96.2.322-329.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OYAMA V. I., EAGLE H. Measurement of cell growth in tissue culture with a phenol reagent (folin-ciocalteau). Proc Soc Exp Biol Med. 1956 Feb;91(2):305–307. doi: 10.3181/00379727-91-22245. [DOI] [PubMed] [Google Scholar]
- PEISACH J., STRECKER H. J. The interconversion of glutamic acid and proline. V. The reduction of delta 1-pyrroline-5-carboxylic acid to proline. J Biol Chem. 1962 Jul;237:2255–2260. [PubMed] [Google Scholar]
- Price G. M. Some aspects of amino acid metabolism in the adult housefly Musca domestica. Biochem J. 1961 Aug;80(2):420–428. doi: 10.1042/bj0800420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SMITH M. E., GREENBERG D. M. Preparation and properties of partially purified glutamic semialdehyde reductase. J Biol Chem. 1957 May;226(1):317–327. [PubMed] [Google Scholar]
- STRECKER H. J. PURIFICATION AND PROPERTIES OF RAT LIVER ORNITHINE DELTA-TRANSAMINASE. J Biol Chem. 1965 Mar;240:1225–1230. [PubMed] [Google Scholar]
- STRECKER H. J. The interconversion of glutamic acid and proline. I. The formation of delta1-pyrroline-5-carboxylic acid from glutamic acid in Escherichia coli. J Biol Chem. 1957 Apr;225(2):825–834. [PubMed] [Google Scholar]
- STRECKER H. J. The interconversion of glutamic acid and proline. II. The preparation and properties of delta 1-pyrroline-5-carboxylic acid. J Biol Chem. 1960 Jul;235:2045–2050. [PubMed] [Google Scholar]
- SZARKOWSKA L., POREMBSKA Z. Arginase in Celerio euphorbiae. Acta Biochim Pol. 1959;6:273–276. [PubMed] [Google Scholar]
- TAMIR H., RATNER S. A STUDY OF ORNITHINE, CITRULLINE AND ARGININE SYNTHESIS IN GROWING CHICKS. Arch Biochem Biophys. 1963 Aug;102:259–269. doi: 10.1016/0003-9861(63)90179-6. [DOI] [PubMed] [Google Scholar]
- TAMIR H., RATNER S. ENZYMES OF ARGININE METABOLISM IN CHICKS. Arch Biochem Biophys. 1963 Aug;102:249–258. doi: 10.1016/0003-9861(63)90178-4. [DOI] [PubMed] [Google Scholar]
- Vecchio D. A., Kalman S. M. Ornithine transaminase in the liver of the chick embryo and in the young chick. Arch Biochem Biophys. 1968 Sep 20;127(1):376–383. doi: 10.1016/0003-9861(68)90239-7. [DOI] [PubMed] [Google Scholar]
- YURA T., VOGEL H. J. Pyrroline-5-carboxylate reductase of Neurospora crassa; partial purification and some properties. J Biol Chem. 1959 Feb;234(2):335–338. [PubMed] [Google Scholar]
