Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1969 Dec;115(4):653–661. doi: 10.1042/bj1150653

Biosynthesis of ethylene. 4-Methylmercapto-2-oxobutyric acid, an intermediate in the formation from methionine

L W Mapson 1, J F March 1, D A Wardale 1
PMCID: PMC1185190  PMID: 5357015

Abstract

The enzyme responsible for the conversion of methionine into a precursor of ethylene in cauliflower florets is a transaminase. The formation of 4-methyl-mercapto-2-oxobutyric acid by this enzyme has been shown. The oxo acid stimulates the synthesis of ethylene when added to floret tissue, and tracer experiments have shown that 14C is incorporated into ethylene from the labelled oxo acid. The evidence is consistent with the view that the oxo acid is an intermediate in the formation of ethylene from methionine.

Full text

PDF
653

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender A. E., Krebs H. A. The oxidation of various synthetic alpha-amino-acids by mammalian d-amino-acid oxidase, l-amino-acid oxidase of cobra venom and the l- and d-amino-acid oxidases of Neurospora crassa. Biochem J. 1950 Feb;46(2):210–219. doi: 10.1042/bj0460210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burg S. P., Clagett C. O. Conversion of methionine to ethylene in vegetative tissue and fruits. Biochem Biophys Res Commun. 1967 Apr 20;27(2):125–130. doi: 10.1016/s0006-291x(67)80050-0. [DOI] [PubMed] [Google Scholar]
  3. Galliard T., Grey T. C. A rapid method for the determination of ethylene in the presence of other volatile natural products. J Chromatogr. 1969 May 20;41(3):442–445. [PubMed] [Google Scholar]
  4. Galliard T., Hulme A. C., Rhodes M. J.C., Wooltorton L. S.C. Enzymic conversion of linolenic acid to ethylene by extracts of apple fruits. FEBS Lett. 1968 Oct;1(5):283–286. doi: 10.1016/0014-5793(68)80132-2. [DOI] [PubMed] [Google Scholar]
  5. KAWANO C., KATSUKI H., YOSHIDA T., TANAKA S. A method for extraction and determination of 2,4-dinitro phenylhydrazones of keto acids. Anal Biochem. 1962 May;3:361–368. doi: 10.1016/0003-2697(62)90064-7. [DOI] [PubMed] [Google Scholar]
  6. Lieberman M., Kunishi A. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 1966 Mar;41(3):376–382. doi: 10.1104/pp.41.3.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mapson L. W., Mead A. Biosynthesis of ethylene. Dual nature of cofactor required for the enzymic production of ethylene from methional. Biochem J. 1968 Aug;108(5):875–881. doi: 10.1042/bj1080875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mapson L. W., Self R., Wardale D. A. Biosynthesis of ethylene. Methanesulphinic acid as cofactor in the enzymic formation of ethylene from methional. Biochem J. 1969 Feb;111(4):413–418. doi: 10.1042/bj1110413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mapson L. W., Wardale D. A. Biosynthesis of ethylene. Enzymes involved in its formation from methional. Biochem J. 1968 Apr;107(3):433–442. doi: 10.1042/bj1070433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mapson L. W., Wardale D. A. Biosynthesis of ethylene. Formation of ethylene from methional by a cell-free enzyme system from cauliflower florets. Biochem J. 1967 Feb;102(2):574–585. doi: 10.1042/bj1020574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. THORNE C. B., MOLNAR D. M. D-Amino acid transamination in bacillus anthracis. J Bacteriol. 1955 Oct;70(4):420–426. doi: 10.1128/jb.70.4.420-426.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Yang S. F. Biosynthesis of ethylene. Ethylene formation from methional by horseradish peroxidase. Arch Biochem Biophys. 1967 Nov;122(2):481–487. doi: 10.1016/0003-9861(67)90222-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES