Abstract
1. The relative efficiencies of nicotinate, quinolinate and nicotinamide as precursors of NAD+ were measured in the first leaf of barley seedlings. 2. In small amounts, both [14C]nicotinate and [14C]quinolinate were quickly and efficiently incorporated into NAD+ and some evidence is presented suggesting that NAD+ is formed from each via nicotinic acid mononucleotide and deamido-NAD. 3. [14C]Nicotinamide served equally well as a precursor of NAD+ and although significant amounts of [14C]NMN were detected, most of the [14C]NAD+ was derived from nicotinate intermediates formed by deamination of [14C]nicotinamide. 4. Radioactive NMN was also a product of the metabolism of [14C]nicotinate and [14C]quinolinate but most probably it arose from the breakdown of [14C]NAD+. 5. In barley leaves where the concentration of NAD+ is markedly increased by infection with Erysiphe graminis, the pathways of NAD+ biosynthesis did not appear to be altered after infection. A comparison of the rates of [14C]NAD+ formation in infected and non-infected leaves indicated that the increase in NAD+ content was not due to an increased rate of synthesis.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- CHAYKIN S., DAGANI M., JOHNSON L., SAMLI M., BATTAILE J. THE FATE OF NICOTINAMIDE IN THE MOUSE; TISSUE METABOLITES. Biochim Biophys Acta. 1965 May 4;100:351–365. doi: 10.1016/0304-4165(65)90004-8. [DOI] [PubMed] [Google Scholar]
- CHAYKIN S., DAGANI M., JOHNSON L., SAMLI M. THE FATE OF NICOTINAMIDE IN THE MOUSE. URINARY METABOLITES. J Biol Chem. 1965 Feb;240:932–938. [PubMed] [Google Scholar]
- Deguchi T., Ichiyama A., Nishizuka Y., Hayaishi O. Studies on the biosynthesis of nicotinamide-adenine dinucleotide in the brain. Biochim Biophys Acta. 1968 Jun 24;158(3):382–393. doi: 10.1016/0304-4165(68)90292-4. [DOI] [PubMed] [Google Scholar]
- GRAHAM D., WALKER D. A. Some effects of light on the interconversion of metabolites in green leaves. Biochem J. 1962 Mar;82:554–560. doi: 10.1042/bj0820554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gholson R. K. The pyridine nucleotide cycle. Nature. 1966 Nov 26;212(5065):933–935. doi: 10.1038/212933a0. [DOI] [PubMed] [Google Scholar]
- Greenbaum A. L., Pinder S. The pathway of biosynthesis of nicotinamide-adenine dinucleotide in rat mammary gland. Biochem J. 1968 Mar;107(1):55–62. doi: 10.1042/bj1070055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grunicke H., Liersch M., Hinz M., Puschendorf B., Richter E., Holzer H. Die Bedeutung des Nikotinsäureamids für die Synthese des NAD in Ehrlich-Ascites-Tumorzellen. Biochim Biophys Acta. 1966 Jun 29;121(2):228–240. [PubMed] [Google Scholar]
- Hagino Y., Lan S. J., Ng C. Y., Henderson L. M. Metabolism of pyridinium precursors of pyridine nucleotides in perfused rat liver. J Biol Chem. 1968 Oct 10;243(19):4980–4986. [PubMed] [Google Scholar]
- IKEDA M., TSUJI H., NAKAMURA S., ICHIYAMA A., NISHIZUKA Y., HAYAISHI O. STUDIES ON THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE. II. A ROLE OF PICOLINIC CARBOXYLASE IN THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE FROM TRYPTOPHAN IN MAMMALS. J Biol Chem. 1965 Mar;240:1395–1401. [PubMed] [Google Scholar]
- Ijichi H., Ichiyama A., Hayaishi O. Studies on the biosynthesis of nicotinamide adenine dinucleotide. 3. Comparative in vivo studies on nicotinic acid, nicotinamide, and quinolinic acid as precursors of nicotinamide adenine dinucleotide. J Biol Chem. 1966 Aug 25;241(16):3701–3707. [PubMed] [Google Scholar]
- JOSHI J. G., HANDLER P. Biosynthesis of trigonelline. J Biol Chem. 1960 Oct;235:2981–2983. [PubMed] [Google Scholar]
- McDonald J. W., Stewart H. B. Participation of nicotinamide mononucleotide in pyridine nucleotide synthesis in tumor and host liver. Can J Biochem. 1967 Mar;45(3):363–373. doi: 10.1139/o67-043. [DOI] [PubMed] [Google Scholar]
- Märki F., Greengard P. Nicotinamide deamidase in Ehrlich ascites tumor cells. Biochim Biophys Acta. 1966 Mar 7;113(3):587–594. doi: 10.1016/s0926-6593(66)80016-4. [DOI] [PubMed] [Google Scholar]
- NISHIZUKA Y., HAYAISHI O. STUDIES ON THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE. I. ENZYMIC SYNTHESIS OF NIACIN RIBONUCLEOTIDES FROM 3-HYDROXYANTHRANILIC ACID IN MAMMALIAN TISSUES. J Biol Chem. 1963 Oct;238:3369–3377. [PubMed] [Google Scholar]
- Ohtsu E., Ichiyama A., Nishizuka Y., Hayaishi O. Pathways of nicotinamide adenine dinucleotide biosynthesis in nicotinic acid or nicotinamide requiring microorganisms. Biochem Biophys Res Commun. 1967 Dec 15;29(5):635–641. doi: 10.1016/0006-291x(67)90263-x. [DOI] [PubMed] [Google Scholar]
- PREISS J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J Biol Chem. 1958 Aug;233(2):488–492. [PubMed] [Google Scholar]
- PREISS J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem. 1958 Aug;233(2):493–500. [PubMed] [Google Scholar]
- Ryrie I. J., Scott K. J. Metabolic Regulation in Diseased Leaves II. Changes in Nicotinamide Nucleotide Coenzymes in Barley Leaves Infected With Powdery Mildew. Plant Physiol. 1968 May;43(5):687–692. doi: 10.1104/pp.43.5.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxton R. E., Rocha V., Rosser R. J., Andreoli A. J., Shimoyama M., Kosaka A., Chandler J. L., Gholson R. K. A comparative study of the regulation of nicotinamide-adenine dinucleotide biosynthesis. Biochim Biophys Acta. 1968 Feb 1;156(1):77–84. doi: 10.1016/0304-4165(68)90106-2. [DOI] [PubMed] [Google Scholar]
- Verachtert H., Bass S. T., Wilder J., Hansen R. G. Ion-exchange paper chromatography of nucleoside diphosphate sugars and related nucleotides. Anal Biochem. 1965 Jun;11(3):497–509. doi: 10.1016/0003-2697(65)90068-0. [DOI] [PubMed] [Google Scholar]
- Waller G. R., Yang K. S., Gholson R. K., Hadwiger L. A., Chaykin S. The pyridine nucleotide cycle and its role in the biosynthesis of ricinine by Ricinus communis L. J Biol Chem. 1966 Oct 10;241(19):4411–4418. [PubMed] [Google Scholar]