Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1969 Dec;115(4):717–723. doi: 10.1042/bj1150717

The enzymic degradation of ovalbumin and its glycopeptides

J Conchie 1, A J Hay 1, I Strachan 1, G A Levvy 1
PMCID: PMC1185198  PMID: 5357018

Abstract

1. Ovalbumin glycopeptides, freed from all amino acids other than aspartic acid and a small proportion of leucine by repeated digestion with Pronase, were hydrolysed by 1-aspartamido-β-N-acetylglucosamine amidohydrolase (glycoaspartamidase) to the corresponding oligosaccharides. The glycoaspartamidase did not attack ovalbumin itself. 2. Ovalbumin, with mannose/hexosamine ratio 5:4, lost 1·5moles of N-acetylglucosamine and more than 2moles of mannose after incubation with α-mannosidase and β-N-acetylglucosaminidase respectively. 3. In ovalbumin glycopeptides with approximate mannose/hexosamine ratios 5:3 and 5:4, one and two N-acetylglucosamine residues respectively were accessible to the action of β-N-acetylglucosaminidase. 4. A mixture of α-mannosidase and β-N-acetylglucosaminidase, acting on an ovalbumin glycopeptide with mannose/hexosamine ratio 5:3·7, removed nearly 4moles of mannose and 1·5moles of N-acetylglucosamine. 5. α-Mannosidase removed about 1·5moles of mannose from the ovalbumin oligosaccharide with mannose/hexosamine ratio approx. 5:3. The subsequent action of β-N-acetylglucosaminidase liberated less than 1mole of N-acetylglucosamine and made at least 1mole further of mannose accessible to α-mannosidase action. 6. It is concluded that the carbohydrate moiety of ovalbumin is linked through a glycosyl group to asparagine. In a molecule with mannose/hexosamine ratio 5:4, there are two β-N-acetylglucosamine residues linked together in a terminal position, followed by α-mannose. There is also present a side chain containing two α-mannose units.

Full text

PDF
717

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOAS N. F. Method for the determination of hexosamines in tissues. J Biol Chem. 1953 Oct;204(2):553–563. [PubMed] [Google Scholar]
  2. CLAMP J. R., HOUGH L. STUDIES ON A GLYCOPEPTIDE FROM OVALBUMIN. Biochem J. 1965 Feb;94:502–508. doi: 10.1042/bj0940502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Conchie J., Strachan I. Distribution, purification and properties of 1-aspartamido-beta-N-acetylglucosamine amidohydrolase. Biochem J. 1969 Dec;115(4):709–715. doi: 10.1042/bj1150709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FINDLAY J., LEVVY G. A. Purification of beta-N-acetylglucosaminidase from the pig epididymis. Biochem J. 1960 Oct;77:170–175. doi: 10.1042/bj0770170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FLETCHER A. P., MARKS G. S., MARSHALL R. D., NEUBERGER A. Carbohydrates in protein. 5. Procedures for the isolation of glycopeptides from hen's-egg albumin and their oxidation by periodate. Biochem J. 1963 May;87:265–273. doi: 10.1042/bj0870265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FRANCOIS C., MARSHALL R. D., NEUBERGER A. Carbohydrates in protein. 4. The determination of mannose in hen's-egg albumin by radioisotope dilution. Biochem J. 1962 May;83:335–341. doi: 10.1042/bj0830335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LEVVY G. A., MCALLAN A. The N-acetylation and estimation of hexosamines. Biochem J. 1959 Sep;73:127–132. doi: 10.1042/bj0730127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Li Y. T. Presence of alpha-D-mannosidic linkage in glycoproteins. Liberation of d-mannose from various glycoproteins by alpha-mannosidase isolated from jack bean meal. J Biol Chem. 1966 Feb 25;241(4):1010–1012. [PubMed] [Google Scholar]
  9. Li Y. T. Studies on the glycosidases in jack bean meal. I. Isolation and properties of alpha-mannosidase. J Biol Chem. 1967 Dec 10;242(23):5474–5480. [PubMed] [Google Scholar]
  10. MONTGOMERY R., WU Y. C., LEE Y. C. PERIODATE OXIDATION OF GLYCOPEPTIDES FROM OVALBUMIN. Biochemistry. 1965 Mar;4:578–587. doi: 10.1021/bi00879a031. [DOI] [PubMed] [Google Scholar]
  11. Mahadevan S., Tappel A. L. Beta-aspartylglucosylamine amido hydrolase of rat liver and kidney. J Biol Chem. 1967 Oct 25;242(20):4568–4576. [PubMed] [Google Scholar]
  12. Makino M., Kojima T., Ohgushi T., Yamashina I. Studies on enzymes acting on glycopeptides. J Biochem. 1968 Feb;63(2):186–192. doi: 10.1093/oxfordjournals.jbchem.a128760. [DOI] [PubMed] [Google Scholar]
  13. Makino M., Kojima T., Yamashina I. Enzymatic cleavage of glycopeptides. Biochem Biophys Res Commun. 1966 Sep 22;24(6):961–966. doi: 10.1016/0006-291x(66)90344-5. [DOI] [PubMed] [Google Scholar]
  14. Makino M., Yamashina I. Periodate oxidation of glycopeptides from ovalbumin. J Biochem. 1966 Sep;60(3):262–267. doi: 10.1093/oxfordjournals.jbchem.a128432. [DOI] [PubMed] [Google Scholar]
  15. Marks G. S., Marshall R. D., Neuberger A. Carbohydrates in protein. 6. Studies on the carbohydrate-peptide bond in hen's-egg albumin. Biochem J. 1963 May;87(2):274–281. doi: 10.1042/bj0870274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  17. Plummer T. H., Jr, Tarentino A., Maley F. The glycopeptide linkage of ribonuclease B. J Biol Chem. 1968 Oct 10;243(19):5158–5164. [PubMed] [Google Scholar]
  18. Snaith S. M., Levvy G. A. Alpha-mannosidase as a zinc-dependent enzyme. Nature. 1968 Apr 6;218(5136):91–92. doi: 10.1038/218091a0. [DOI] [PubMed] [Google Scholar]
  19. Snaith S. M., Levvy G. A. Purification and properties of alpha-D-mannosidase from jack-bean meal. Biochem J. 1968 Dec;110(4):663–670. doi: 10.1042/bj1100663. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES