Abstract
1. The metabolism of K+, Na+ and Cl− has been investigated in isolated fat-cells prepared from the epididymal adipose tissue of rats. 2. Methods are described for measuring the intracellular water space, the rates of loss of intracellular 42K+, 22Na+ and 36Cl− and the intracellular concentrations of K+, Na+ and Cl− in isolated fat-cells. 3. The intracellular water space, measured as the [3H]water space minus the [carboxylic acid-14C]inulin space, was 3·93±0·38μl./100mg. cell dry wt. 4. The first-order rate constants for radioisotope effluxes from isolated fat-cells were 0·029min.−1 for 42K+, 0·245min.−1 for 22Na+ and 0·158min.−1 for 36Cl−. 5. The intracellular concentrations of K+, Na+ and Cl− were 146m-equiv./l., 18·6±2·9m-equiv./l. and 43±2·4m-equiv./l. respectively. 6. The total intracellular K+ content of isolated fat-cells was determined by atomic-absorption spectrophotometry to confirm the value obtained from the radioisotope-efflux data. 7. The ion effluxes from isolated fat-cells were: K+, 1·5pmoles/cm.2/sec., Na+, 1·6pmoles/cm.2/sec., and Cl−, 2·4pmoles/cm.2/sec. 8. The membrane potential of isolated fat-cells calculated from the Cl− distribution ratio was −28·7mv.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BONTING S. L., SIMON K. A., HAWKINS N. M. Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat. Arch Biochem Biophys. 1961 Dec;95:416–423. doi: 10.1016/0003-9861(61)90170-9. [DOI] [PubMed] [Google Scholar]
- CREESE R. Measurement of cation fluxes in rat diaphragm. Proc R Soc Lond B Biol Sci. 1954 Sep 27;142(909):497–513. doi: 10.1098/rspb.1954.0039. [DOI] [PubMed] [Google Scholar]
- CROFFORD O. B., RENOLD A. E. GLUCOSE UPTAKE BY INCUBATED RAT EPIDIDYMAL ADIPOSE TISSUE. RATE-LIMITING STEPS AND SITE OF INSULIN ACTION. J Biol Chem. 1965 Jan;240:14–21. [PubMed] [Google Scholar]
- Clausen T., Rodbell M., Dunand P. The metabolism of isolated fat cells. VII. Sodium-linked, energy-dependent, and ouabain-sensitive potassium accumulation in ghosts. J Biol Chem. 1969 Mar 10;244(5):1252–1257. [PubMed] [Google Scholar]
- Creese R. Sodium fluxes in diaphragm muscle and the effects of insulin and serum proteins. J Physiol. 1968 Jul;197(2):255–278. doi: 10.1113/jphysiol.1968.sp008558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crofford O. B., Stauffacher W., Jeanrenaud B., Renold A. E. Glucose transport in isolated fat cells. Procedures for measurement of the intracellular water space. Helv Physiol Pharmacol Acta. 1966;24(1):45–57. [PubMed] [Google Scholar]
- DANIEL E. E. POTASSIUM MOVEMENTS IN RAT UTERUS STUDIED IN VITRO. I. EFFECTS OF TEMPERATURE. Can J Biochem Physiol. 1963 Oct;41:2065–2084. [PubMed] [Google Scholar]
- Denton R. M., Yorke R. E., Randle P. J. Measurement of concentrations of metabolites in adipose tissue and effects of insulin, alloxan-diabetes and adrenaline. Biochem J. 1966 Aug;100(2):407–419. doi: 10.1042/bj1000407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fain J. N. Stimulation by insulin and prostaglandin E1 of glucose metabolism and inhibition of lipolytic action of theophylline on fat cells in the absence of K+. Endocrinology. 1968 Sep;83(3):548–554. doi: 10.1210/endo-83-3-548. [DOI] [PubMed] [Google Scholar]
- GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOODFORD P. J., HERMANSEN K. Sodium and potassium movements in the unstriated muscle of the guinea-pig taenia coli. J Physiol. 1961 Oct;158:426–448. doi: 10.1113/jphysiol.1961.sp006778. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldrick R. B. Morphological changes in the adipocyte during fat deposition and mobilization. Am J Physiol. 1967 Apr;212(4):777–782. doi: 10.1152/ajplegacy.1967.212.4.777. [DOI] [PubMed] [Google Scholar]
- Ho R. J., Jeanrenaud B., Renold A. E. Ouabain-sensitive fatty acid release from isolated fat cells. Experientia. 1966 Feb 15;22(2):86–87. doi: 10.1007/BF01900164. [DOI] [PubMed] [Google Scholar]
- Kypson J., Triner L., Nahas G. G. Effects of ouabain and K+-free medium on activated lipolysis and epinephrine-stimulated glycogenolysis. J Pharmacol Exp Ther. 1968 Jan;159(1):8–17. [PubMed] [Google Scholar]
- Letarte J., Renold A. E. Glucose metabolism in fat cells stimulated by insulin and dependent on sodium. Nature. 1967 Aug 26;215(5104):961–962. doi: 10.1038/215961a0. [DOI] [PubMed] [Google Scholar]
- McLENNAN H. The transfer of potassium between mammalian muscle and the surrounding medium. Biochim Biophys Acta. 1955 Jan;16(1):87–95. doi: 10.1016/0006-3002(55)90186-4. [DOI] [PubMed] [Google Scholar]
- Miller L. V., Schlosser C. H., Beigelman P. M. Electrical potentials of isolated fat cells. Biochim Biophys Acta. 1966 Feb 7;112(2):375–376. doi: 10.1016/0926-6585(66)90336-0. [DOI] [PubMed] [Google Scholar]
- Modolell J. B., Moore R. O. ATPase activities of rat epididymal adipose tissue. Biochim Biophys Acta. 1967 May 2;135(2):319–332. doi: 10.1016/0005-2736(67)90125-3. [DOI] [PubMed] [Google Scholar]
- RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
- SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- WELLER J. M., TAYLOR I. M. Rate of potassium exchange in the rat erythrocyte. Proc Soc Exp Biol Med. 1951 Dec;78(3):780–782. doi: 10.3181/00379727-78-19216. [DOI] [PubMed] [Google Scholar]
- Wiggins P. M. A kinetic study of the state of potassium in kidney tissue. Biochim Biophys Acta. 1965 Nov 29;109(2):454–466. doi: 10.1016/0926-6585(65)90171-8. [DOI] [PubMed] [Google Scholar]
- ZIERLER K. L. Effect of insulin on potassium efflux from rat muscle in the presence and absence of glucose. Am J Physiol. 1960 May;198:1066–1070. doi: 10.1152/ajplegacy.1960.198.5.1066. [DOI] [PubMed] [Google Scholar]