Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1970 Feb;116(4):713–720. doi: 10.1042/bj1160713

Specific alkylation of a histidine residue in carnitine acetyltransferase by bromoacetyl-l-carnitine

J F A Chase 1, P K Tubbs 1
PMCID: PMC1185417  PMID: 5461620

Abstract

Incubation of carnitine acetyltransferase with low concentrations of bromoacetyl-l-carnitine causes a rapid and irreversible loss of enzyme activity; one mol of inhibitor can inactivate one mol of enzyme. Bromoacetyl-d-carnitine, iodoacetate or iodoacetamide are ineffective. l-Carnitine protects the transferase from bromoacetyl-l-carnitine. Investigation shows that the enzyme first reversibly binds bromoacetyl-l-carnitine with an affinity similar to that shown for the normal substrate acetyl-l-carnitine; this binding is followed by an alkylation reaction, forming the carnitine ester of a monocarboxymethyl-protein, which is catalytically inactive. The carnitine is released at an appreciable rate by spontaneous hydrolysis, and the resulting carboxymethyl-enzyme is also inactive. Total acid hydrolysis of enzyme after treatment with 2-[14C]bromoacetyl-l-carnitine yields N-3-carboxy[14C]methylhistidine as the only labelled amino acid. These findings, taken in conjunction with previous work, suggest that the single active centre of carnitine acetyltransferase contains a histidine residue.

Full text

PDF
713

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHASE J. F., PEARSON D. J., TUBBS P. K. THE PREPARATION OF CRYSTALLIN CARNITINE ACETYLTRANSFERASE. Biochim Biophys Acta. 1965 Jan;96:162–165. doi: 10.1016/0005-2787(65)90622-2. [DOI] [PubMed] [Google Scholar]
  2. CRESTFIELD A. M., STEIN W. H., MOORE S. Alkylation and identification of the histidine residues at the active site of ribonuclease. J Biol Chem. 1963 Jul;238:2413–2419. [PubMed] [Google Scholar]
  3. CRESTFIELD A. M., STEIN W. H., MOORE S. Properties and conformation of the histidine residues at the active site of ribonuclease. J Biol Chem. 1963 Jul;238:2421–2428. [PubMed] [Google Scholar]
  4. Chase J. F., Tubbs P. K. Conditions for the self-catalysed inactivation of carnitine acetyltransferase. A novel form of enzyme inhibition. Biochem J. 1969 Jan;111(2):225–235. doi: 10.1042/bj1110225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chase J. F., Tubbs P. K. Some kinetic studies on the mechanism of action of carnitine acetyltransferase. Biochem J. 1966 Apr;99(1):32–40. doi: 10.1042/bj0990032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chase J. F. pH-dependence of carnitine acetyltransferase activity. Biochem J. 1967 Aug;104(2):503–509. doi: 10.1042/bj1040503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FRIEDMAN S., FRAENKEL G. Reversible enzymatic acetylation of carnitine. Arch Biochem Biophys. 1955 Dec;59(2):491–501. doi: 10.1016/0003-9861(55)90515-4. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. MARQUIS N. R., FRITZ I. B. ENZYMOLOGICAL DETERMINATION OF FREE CARNITINE CONCENTRATIONS IN RAT TISSUES. J Lipid Res. 1964 Apr;5:184–187. [PubMed] [Google Scholar]
  10. Perham R. N. A diagonal paper-electrophoretic technique for studying amino acid sequences around the cysteine and cystine residues of proteins. Biochem J. 1967 Dec;105(3):1203–1207. doi: 10.1042/bj1051203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Petra P. H., Cohen W., Shaw E. N. Isolation and characterization of the alkylated histidine from TLCK inhibited trypsin. Biochem Biophys Res Commun. 1965 Dec 21;21(6):612–618. doi: 10.1016/0006-291x(65)90530-9. [DOI] [PubMed] [Google Scholar]
  12. SCHOELLMANN G., SHAW E. Direct evidence for the presence of histidine in the active center of chymotrypsin. Biochemistry. 1963 Mar-Apr;2:252–255. doi: 10.1021/bi00902a008. [DOI] [PubMed] [Google Scholar]
  13. Shaw E., Ruscica J. The essentiality of histidine in the catalytic action of subtilisin. Covalent modification by a specific reagent. J Biol Chem. 1968 Dec 10;243(23):6312–6313. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES