Abstract
1. The reaction of rabbit muscle aldolase with 2-methylmaleic anhydride is described. All the protein amino groups can be reversibly blocked. 2. As the reaction proceeds, the enzyme activity decreases until, at about 50% citraconylation of amino groups, the enzyme is completely inhibited. At this stage, little or no dissociation of the enzyme tetramer is observed and 75% of the activity is recoverable on unblocking the amino groups. 3. At 80% blocking, the enzyme is completely dissociated but little enzymic activity is recoverable after unblocking. Inability to recover activity after citraconylation and unblocking correlates with the onset of dissociation of the citraconyl-aldolase seen on ultracentrifugation. 4. The only irreversible modification of the enzyme primary structure detectable after the citraconylation and unblocking reactions is the partial loss of thiol groups. It is probable that this is responsible for the inability to reform active enzyme from the citraconylated subunit. 5. Other reversible side reactions of maleic anhydride and citraconic anhydride that may occur with proteins are discussed.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson P. J., Gibbons I., Perham R. N. A comparative study of the structure of muscle fructose 1,6-diphosphate aldolases. Eur J Biochem. 1969 Dec;11(3):503–509. doi: 10.1111/j.1432-1033.1969.tb00802.x. [DOI] [PubMed] [Google Scholar]
- BLOSTEIN R., RUTTER W. J. COMPARATIVE STUDIES OF LIVER AND MUSCLE ALDOLASE. II. IMMUNOCHEMICAL AND CHROMATOGRAPHIC DIFFERENTIATION. J Biol Chem. 1963 Oct;238:3280–3285. [PubMed] [Google Scholar]
- Braunitzer G., Beyreuther K., Fujiki H., Schrank B. Tetrafluorbernsteinsäure-anhydrid, ein neues Reagens zur spezifischen und reversiblen Maskierung der Aminogruppen in Proteinen. Hoppe Seylers Z Physiol Chem. 1968 Feb;349(2):265–265. [PubMed] [Google Scholar]
- Butler P. J., Harris J. I., Hartley B. S., Lebeman R. The use of maleic anhydride for the reversible blocking of amino groups in polypeptide chains. Biochem J. 1969 May;112(5):679–689. doi: 10.1042/bj1120679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixon H. B., Perham R. N. Reversible blocking of amino groups with citraconic anhydride. Biochem J. 1968 Sep;109(2):312–314. doi: 10.1042/bj1090312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freedman R. B., Radda G. K. The reaction of 2,4,6-trinitrobenzenesulphonic acid with amino acids, Peptides and proteins. Biochem J. 1968 Jul;108(3):383–391. doi: 10.1042/bj1080383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gounaris A. D., Perlmann G. E. Succinylation of pepsinogen. J Biol Chem. 1967 Jun 10;242(11):2739–2745. [PubMed] [Google Scholar]
- HABEEB A. F., CASSIDY H. G., SINGER S. J. Molecular structural effects produced in proteins by reaction with succinic anhydride. Biochim Biophys Acta. 1958 Sep;29(3):587–593. doi: 10.1016/0006-3002(58)90016-7. [DOI] [PubMed] [Google Scholar]
- HEILMANN J., BARROLLIER J., WATZKE E. Beitrag zur Aminosäurebestimmung auf Papierchromatogrammen. Hoppe Seylers Z Physiol Chem. 1957;309(4-6):219–220. [PubMed] [Google Scholar]
- Habeeb A. F. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966 Mar;14(3):328–336. doi: 10.1016/0003-2697(66)90275-2. [DOI] [PubMed] [Google Scholar]
- Kawahara K., Tanford C. The number of polypeptide chains in rabbit muscle aldolase. Biochemistry. 1966 May;5(5):1578–1584. doi: 10.1021/bi00869a018. [DOI] [PubMed] [Google Scholar]
- Morse D. E., Horecker B. L. The mechanism of action of aldolases. Adv Enzymol Relat Areas Mol Biol. 1968;31:125–181. doi: 10.1002/9780470122761.ch4. [DOI] [PubMed] [Google Scholar]
- Penhoet E., Kochman M., Valentine R., Rutter W. J. The subunit structure of mammalian fructose diphosphate aldolase. Biochemistry. 1967 Sep;6(9):2940–2949. doi: 10.1021/bi00861a039. [DOI] [PubMed] [Google Scholar]
- Perham R. N. A diagonal paper-electrophoretic technique for studying amino acid sequences around the cysteine and cystine residues of proteins. Biochem J. 1967 Dec;105(3):1203–1207. doi: 10.1042/bj1051203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perham R. N., Richards F. M. Reactivity and structural role of protein amino groups in tobacco mosaic virus. J Mol Biol. 1968 May 14;33(3):795–807. doi: 10.1016/0022-2836(68)90320-3. [DOI] [PubMed] [Google Scholar]
- Sia C. L., Horecker B. L. Dissociation of protein subunits by maleylation. Biochem Biophys Res Commun. 1968 Jun 10;31(5):731–737. doi: 10.1016/0006-291x(68)90622-0. [DOI] [PubMed] [Google Scholar]
- Turano C., Giartosio A., Riva F., Fasella P. On the formation of S-(alpha,beta-dicarboxyethyl) derivatives of glutamic-aspartic aminotransferase. Biochem Biophys Res Commun. 1964 Jun 15;16(3):221–226. doi: 10.1016/0006-291x(64)90329-8. [DOI] [PubMed] [Google Scholar]

