Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Apr 15;172(1):1–7. doi: 10.1042/bj1720001

All factors required for protein synthesis are retained on heparin bound to Sepharose.

J Hradec, Z Dusek
PMCID: PMC1185654  PMID: 656063

Abstract

1. Postmitochondrial supernatants of rabbit reticulocyte lysates were chromatographed on heparin bound to Sepharose 4B, and the fraction retained on affinity columns was separated by subsequent gel filtration on Sepharose 4B into three fractions, two of them active in protein synthesis. 2. The heavier fraction sedimented at 40S and contained more than 10% RNA. This consisted predominantly of a 12S component, with smaller amounts of the 9S and 4S RNA species. The lighter fraction (18-20S) was composed of proteins with less than 1% RNA. 3. Different enzymic activities were associated with these fractions. 4. In the presence of both fractions, efficient translation took place on combined ribosomal subunits of rat liver with added cofactors. Globin messenger ribonucleoprotein stimulated this translation 5-6-fold. 5. Relatively large complexes of all factors required for protein synthesis are apparently isolated from reticulocytes by affinity chromatography on heparin-Sepharose 4B. Such complexes may occur naturally in the cytoplasm of mammalian cells.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balkow K., Mizuno S., Fisher J. M., Rabinovitz M. Hemin control of globin synthesis: effect of a translational repressor on Met-tRNAf binding to the small ribosomal subunit and its relation to the activity and alailability of an initiation factor. Biochim Biophys Acta. 1973 Oct 26;324(3):397–409. doi: 10.1016/0005-2787(73)90284-0. [DOI] [PubMed] [Google Scholar]
  2. Bandyopadhyay A. K., Deutscher M. P. Complex of aminoacyl-transfer RNA synthetases. J Mol Biol. 1971 Aug 28;60(1):113–122. doi: 10.1016/0022-2836(71)90451-7. [DOI] [PubMed] [Google Scholar]
  3. Bermek E., Matthaei H. Elongation factors from human lymphatic tissue: Isolation and some properties. FEBS Lett. 1970 Sep 24;10(2):121–124. doi: 10.1016/0014-5793(70)80431-8. [DOI] [PubMed] [Google Scholar]
  4. Crystal R. G., Elson N. A., Anderson W. F. Initiation of globin synthesis: assays. Methods Enzymol. 1974;30:101–127. doi: 10.1016/0076-6879(74)30014-6. [DOI] [PubMed] [Google Scholar]
  5. Filipowicz W., Sierra J. M., Nombela C., Ochoa S., Merrick W. C., Anderson W. F. Polypeptide chain initiation in eukaryotes: initiation factor requirements for translation of natural messengers. Proc Natl Acad Sci U S A. 1976 Jan;73(1):44–48. doi: 10.1073/pnas.73.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gross M. Control of protein synthesis by hemin. Isolation and characterization of a supernatant factor from rabbit reticulocyte lysate. Biochim Biophys Acta. 1976 Nov 1;447(4):445–459. doi: 10.1016/0005-2787(76)90082-4. [DOI] [PubMed] [Google Scholar]
  7. Hradec J., Dusek Z., Bermek E., Matthaei H. The role of cholesteryl 14-methylhexadecanoate in peptide elongation reactions. Biochem J. 1971 Aug;123(5):959–966. doi: 10.1042/bj1230959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hradec J., Dusek Z., Mach O. Influence of cholesteryl 14-methylhexadecanoate on some ribosomal functions required for peptide elongation. Biochem J. 1974 Feb;138(2):147–154. doi: 10.1042/bj1380147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hradec J. Specific hydrolysis of methionyl-tRNA Met f catalyzed by a purified peptide. Nucleic Acids Res. 1975 Nov;2(11):2119–2129. doi: 10.1093/nar/2.11.2119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hradec J. Specificity of factors required for peptide elongation in mammalian cells. FEBS Lett. 1970 Oct 5;10(3):163–164. doi: 10.1016/0014-5793(70)80443-4. [DOI] [PubMed] [Google Scholar]
  11. Kemper W. M., Merrick W. C., Redfield B., Liu C. K., Weissbach H. Purification and properties of rabbit reticulocyte elongation factor 1. Arch Biochem Biophys. 1976 Jun;174(2):603–612. doi: 10.1016/0003-9861(76)90389-1. [DOI] [PubMed] [Google Scholar]
  12. Lebleu B. Isolation of rabbit reticulocyte 9 S mRNA. Methods Enzymol. 1974;30:613–621. doi: 10.1016/0076-6879(74)30059-6. [DOI] [PubMed] [Google Scholar]
  13. Legocki A. B., Redfield B., Weissbach H. Interactions of the heavy and light forms of elongation factor I with guanine nucleotides and aminoacyl-tRNA. Arch Biochem Biophys. 1974 Apr 2;161(2):709–712. doi: 10.1016/0003-9861(74)90359-2. [DOI] [PubMed] [Google Scholar]
  14. Legon S., Jackson R. J., Hunt T. Control of protein synthesis in reticulocyte lysates by haemin. Nat New Biol. 1973 Jan 31;241(109):150–152. doi: 10.1038/newbio241150a0. [DOI] [PubMed] [Google Scholar]
  15. Perry R. P., La Torre J., Kelley D. E., Greenberg J. R. On the lability of poly(A) sequences during extraction of messenger RNA from polyribosomes. Biochim Biophys Acta. 1972 Mar 14;262(2):220–226. doi: 10.1016/0005-2787(72)90236-5. [DOI] [PubMed] [Google Scholar]
  16. Pinphanichakarn P., Kramer G., Hardesty B. Partial purification and characterization of a translational inhibitor from Friend leukemia cells. J Biol Chem. 1977 Mar 25;252(6):2106–2112. [PubMed] [Google Scholar]
  17. Rogg H., Wehrli W., Staehelin M. Isolation of mammalian transfer RNA. Biochim Biophys Acta. 1969 Nov 19;195(1):13–15. doi: 10.1016/0005-2787(69)90597-8. [DOI] [PubMed] [Google Scholar]
  18. Stanley W. M., Jr Preparation and analysis of L-( 35 S)methionine labeled transfer ribonucleic acids from rabbit liver. Anal Biochem. 1972 Jul;48(1):202–216. doi: 10.1016/0003-2697(72)90183-2. [DOI] [PubMed] [Google Scholar]
  19. Ussery M. A., Tanaka W. K., Hardesty B. Subcellular distribution of aminoacyl-tRNA synthetases in various eukaryotic cells. Eur J Biochem. 1977 Feb;72(3):491–500. doi: 10.1111/j.1432-1033.1977.tb11272.x. [DOI] [PubMed] [Google Scholar]
  20. Vennegoor C., Bloemendal H. Occurrence and particle character of aminoacyl-tRNA synthetases in the post-microsomal fraction from rat liver. Eur J Biochem. 1972 Apr 24;26(4):462–473. doi: 10.1111/j.1432-1033.1972.tb01788.x. [DOI] [PubMed] [Google Scholar]
  21. Waldman A. A., Goldstein J. Inhibition by heparin of globin messenger rbinucleic acid translation in a mammalian cell-free system. Biochemistry. 1973 Jul 3;12(14):2706–2711. doi: 10.1021/bi00738a025. [DOI] [PubMed] [Google Scholar]
  22. Waldman A. A., Goldstein J. Rabbit reticulocyte ribosomes and Krebs ascites supernatant: a mixed system dependent upon added mRNA. Biochim Biophys Acta. 1973 Dec 7;331(2):243–250. doi: 10.1016/0005-2787(73)90437-1. [DOI] [PubMed] [Google Scholar]
  23. Waldman A. A., Marx G., Goldstein J. Heparin as inhibitor of mammalian protein synthesis. II. Degree of sulfation; related sulfated mucopolysaccharides. Biochim Biophys Acta. 1974 Apr 22;343(2):324–329. doi: 10.1016/0304-4165(74)90096-8. [DOI] [PubMed] [Google Scholar]
  24. Waldman A. A., Marx G., Goldstein J. Isolation of rabbit reticulocyte initiation factors by means of heparin bound to sepharose. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2352–2356. doi: 10.1073/pnas.72.6.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES