Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Apr 15;172(1):69–76. doi: 10.1042/bj1720069

Purification and properties of a manganese-stimulated deoxyribonuclease produced during sporulation of Bacillus subtilis.

A Akrigg
PMCID: PMC1185663  PMID: 26339

Abstract

A DNAase (deoxyribonuclease) was isolated from culture supernatants of sporulating Bacillus subtilis 168. The purified enzyme migrated as a single band during polyacrylamide-gel electrophoresis. The enzyme differs from other DNAases of B. subtilis in molecular weight, metal-ion requirement and mode of action. The enzyme was inactive in the absence of metal ions, and exhibited optimum activity with 10 mM-Mn2+, although Mg2+, Cd2+ and Co2+ could also permit some activity. The pH optimum for the enzyme was pH 7.5, and it degraded linear-duplex DNA or closed-circular-duplex DNA to acid-soluble material. There was little or no activity on single-stranded DNA or rRNA. Sucrose-gradient analysis of the products of DNAase action on bacteriophage T7 DNA showed that endonucleolytic cleavage had occurred by the introduction of single-strand breaks in both strands of the duplex. The molecular weight of the enzyme was determined, by gel filtration on Sephadex G-75, to be 12000.

Full text

PDF
69

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akrigg A., Mandelstam J. Extracellular manganese-stimulated deoxyribonuclease as a marker event in sporulation of Bacillus subtilis. Biochem J. 1978 Apr 15;172(1):63–67. doi: 10.1042/bj1720063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burke W. F., Jr, Spizizen J. Isolation, characterization, and activation of the magnesium dependent endodeoxyribonuclease from Bacillus subtilis. Biochemistry. 1977 Feb 8;16(3):403–410. doi: 10.1021/bi00622a010. [DOI] [PubMed] [Google Scholar]
  6. Chestukhin A. V., Shemyakin M. F., Kalinina N. A., Prozorov A. A. Some properties of ATP dependent deoxyribonucleases from normal and rec-mutant strains of Bacillus subtilis. FEBS Lett. 1972 Jul 15;24(1):121–125. doi: 10.1016/0014-5793(72)80841-x. [DOI] [PubMed] [Google Scholar]
  7. Ciarrocchi G., Fortunato A., Cobianchi F., Falaschi A. An intracellular endonuclease of Bacillus subtilis specific for single-stranded DNA. Eur J Biochem. 1976 Jan 15;61(2):487–492. doi: 10.1111/j.1432-1033.1976.tb10043.x. [DOI] [PubMed] [Google Scholar]
  8. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  9. Doly J., Anagnostopoulos C. Isolation, subunit structure and properties of the ATP-dependent deoxyribonuclease of Bacillus subtilis. State of the protein in a mutant devoid of activity. Eur J Biochem. 1976 Dec;71(1):309–316. doi: 10.1111/j.1432-1033.1976.tb11117.x. [DOI] [PubMed] [Google Scholar]
  10. FRASER D., JERREL E. A. The amino acid composition of T3 bacteriophage. J Biol Chem. 1953 Nov;205(1):291–295. [PubMed] [Google Scholar]
  11. Kerr I. M., Pratt E. A., Lehman I. R. Exonucleolytic degradation of high-molecular-weight DNA and RNA to nucleoside 3'-phosphates by a nuclease from B. subtilis. Biochem Biophys Res Commun. 1965 Jul 12;20(2):154–162. doi: 10.1016/0006-291x(65)90339-6. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laskowski M., Sr DNases and their use in the studies of primary structure of nucleic acids. Adv Enzymol Relat Areas Mol Biol. 1967;29:165–220. doi: 10.1002/9780470122747.ch4. [DOI] [PubMed] [Google Scholar]
  14. McCarthy C., Nester E. W. Heat-activated endonuclease in Bacillus subtilis. J Bacteriol. 1969 Mar;97(3):1426–1430. doi: 10.1128/jb.97.3.1426-1430.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Okazaki R., Okazaki T., Sakabe K. An extracellular nuclease of Bacillus subtilis: some novel properties as a DNA exonuclease. Biochem Biophys Res Commun. 1966 Mar 22;22(6):611–619. doi: 10.1016/0006-291x(66)90190-2. [DOI] [PubMed] [Google Scholar]
  16. Richardson C. C. The 5'-terminal nucleotides of T7 bacteriophage deoxyribonucleic acid. J Mol Biol. 1966 Jan;15(1):49–61. doi: 10.1016/s0022-2836(66)80208-5. [DOI] [PubMed] [Google Scholar]
  17. Scher B., Dubnau D. A manganese-stimulated endonuclease from Bacillus subtilis. Biochem Biophys Res Commun. 1973 Dec 10;55(3):595–602. doi: 10.1016/0006-291x(73)91185-6. [DOI] [PubMed] [Google Scholar]
  18. Scher B., Dubnau Purification and properties of a manganese-stimulated endonuclease from Bacillus subtilis. J Bacteriol. 1976 Apr;126(1):429–438. doi: 10.1128/jb.126.1.429-438.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sterlini J. M., Mandelstam J. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J. 1969 Jun;113(1):29–37. doi: 10.1042/bj1130029. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES