Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 May 15;172(2):233–238. doi: 10.1042/bj1720233

An energy requirement for the degradation of intravenously injected 125I-labeled albumin in mouse liver and kidney slices.

J L Mego, R M Farb
PMCID: PMC1185688  PMID: 666741

Abstract

Liver and kidney slices prepared 30min after intravenous injections of formaldehyde-treated 125I-labelled bovine serum albumin into mice degrade approx. 25-40% of the protein to a trichloroacetic acid-soluble form during 60min incubation at 37 degrees C. The presence of bicarbonate in Krebs-Ringer phosphate medium inhibited intracellular proteolysis, and similar results were obtained at pH5 or pH7 in kidney or liver slices. Cellular integrity was required to obtain substantial rates of proteolysis. This intralysosomal intracellular degradation of an exogenous protein was partially inhibited by inhibitors of oxidative ATP formation, such as cyanide, azide, 2,4-dinitrophenol and absence of oxygen. Arsenite and iodoacetamide were also effective inhibitors, but the effects of fluoride were variable. These results suggest that an energy requirement exists for intralysosomal proteolysis in intact cells and are consistent with the hypothesis that energy may be required to maintain intralysosomal acidity.

Full text

PDF
233

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker N. H., Novikoff A. B., Zimmerman H. M. Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem. 1967 Mar;15(3):160–165. doi: 10.1177/15.3.160. [DOI] [PubMed] [Google Scholar]
  2. Brostrom C. O., Jeffay H. Protein catabolism in rat liver homogenates. A re-evaluation of the energy requirement for protein catabolism. J Biol Chem. 1970 Aug 25;245(16):4001–4008. [PubMed] [Google Scholar]
  3. Dean R. T. Concerning a possible mechanism for selective capture of cytoplasmic proteins by lysosomes. Biochem Biophys Res Commun. 1975 Nov 17;67(2):604–609. doi: 10.1016/0006-291x(75)90855-4. [DOI] [PubMed] [Google Scholar]
  4. Dean R. T. Direct evidence of importance of lysosomes in degradation of intracellular proteins. Nature. 1975 Oct 2;257(5525):414–416. doi: 10.1038/257414a0. [DOI] [PubMed] [Google Scholar]
  5. Dean R. T. Lysosomal enzymes as agents of turnover of soluble cytoplasmic proteins. Eur J Biochem. 1975 Oct 1;58(1):9–14. doi: 10.1111/j.1432-1033.1975.tb02342.x. [DOI] [PubMed] [Google Scholar]
  6. Etlinger J. D., Goldberg A. L. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc Natl Acad Sci U S A. 1977 Jan;74(1):54–58. doi: 10.1073/pnas.74.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  8. Henning R. pH gradient across the lysosomal membrane generated by selective cation permeability and Donnan equilibrium. Biochim Biophys Acta. 1975 Aug 20;401(2):307–316. doi: 10.1016/0005-2736(75)90314-4. [DOI] [PubMed] [Google Scholar]
  9. Hershko A., Tomkins G. M. Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. Influence of the composition of the medium and adenosine triphosphate dependence. J Biol Chem. 1971 Feb 10;246(3):710–714. [PubMed] [Google Scholar]
  10. Hopgood M. F., Clark M. G., Ballard F. J. Inhibition of protein degradation in isolated rat hepatocytes. Biochem J. 1977 May 15;164(2):399–407. doi: 10.1042/bj1640399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mego J. L., Bertini F., McQueen J. D. The use of formaldehyde-treated 131-I-albumin in the study of digestive vacuoles and some properties of these particles from mouse liver. J Cell Biol. 1967 Mar;32(3):699–707. doi: 10.1083/jcb.32.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mego J. L., Farb R. M., Barnes J. An adenosine triphosphate-dependent stabilization of proteolytic activity in heterolysosomes. Evidence for a proton pump. Biochem J. 1972 Jul;128(4):763–769. doi: 10.1042/bj1280763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mego J. L. Further evidence for a proton pump in mouse kidney phagolysosomes: effect of nigericin and 2,4-dinitrophenol on the stimulation of intralysosomal proteolysis by ATP. Biochem Biophys Res Commun. 1975 Nov 17;67(2):571–575. doi: 10.1016/0006-291x(75)90850-5. [DOI] [PubMed] [Google Scholar]
  14. Mego J. L., McQueen J. D. Heterolysosome formation in mouse liver. J Cell Physiol. 1967 Aug;70(1):115–120. doi: 10.1002/jcp.1040700115. [DOI] [PubMed] [Google Scholar]
  15. Mego J. L. The effect of pH on cathepsin activities in mouse liver heterolysosomes. Biochem J. 1971 May;122(4):445–452. doi: 10.1042/bj1220445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Misaka E., Tappel A. L. Inhibition studies of cathepsins A, B, C and D from rat liver lysosomes. Comp Biochem Physiol B. 1971 Apr 15;38(4):651–662. doi: 10.1016/0305-0491(71)90268-9. [DOI] [PubMed] [Google Scholar]
  17. Mortimore G. E., Neely A. N., Cox J. R., Guinivan R. A. Proteolysis in homogenates of perfused rat liver: responses to insulin, glucagon and amino acids. Biochem Biophys Res Commun. 1973 Sep 5;54(1):89–95. doi: 10.1016/0006-291x(73)90892-9. [DOI] [PubMed] [Google Scholar]
  18. Neely A. N., Mortimore G. E. Localization of products of endogenous proteolysis in lysosomes of perfused rat liver. Biochem Biophys Res Commun. 1974 Jul 24;59(2):680–687. doi: 10.1016/s0006-291x(74)80033-1. [DOI] [PubMed] [Google Scholar]
  19. Poole B., Wibo M. Protein degradation in cultured cells. The effect of fresh medium, fluoride, and iodoacetate on the digestion of cellular protein of rat fibroblasts. J Biol Chem. 1973 Sep 10;248(17):6221–6226. [PubMed] [Google Scholar]
  20. Reijngoud D. J., Oud P. S., Kás J., Tager J. M. Relationship between medium pH and that of the lysosomal matrix as studied by two independent methods. Biochim Biophys Acta. 1976 Oct 5;448(2):290–302. doi: 10.1016/0005-2736(76)90243-1. [DOI] [PubMed] [Google Scholar]
  21. Reijngoud D., Tager J. M. Effect of ionophores and temperature on intralysosomal pH. FEBS Lett. 1975 Jun 1;54(1):76–79. doi: 10.1016/0014-5793(75)81072-6. [DOI] [PubMed] [Google Scholar]
  22. Riejngoud D. J., Tager J. M. Measurement of intralysosomal pH. Biochim Biophys Acta. 1973 Jan 24;297(1):174–178. doi: 10.1016/0304-4165(73)90061-5. [DOI] [PubMed] [Google Scholar]
  23. SIMPSON M. V. The release of labeled amino acids from the proteins of rat liver slices. J Biol Chem. 1953 Mar;201(1):143–154. [PubMed] [Google Scholar]
  24. STRAUS W. CYTOCHEMICAL OBSERVATIONS ON THE RELATIONSHIP BETWEEN LYSOSOMES AND PHAGOSOMES IN KIDNEY AND LIVER BY COMBINED STAINING FOR ACID PHOSPHATASE AND INTRAVENOUSLY INJECTED HORSERADISH PEROXIDASE. J Cell Biol. 1964 Mar;20:497–507. doi: 10.1083/jcb.20.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES