Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Jun 15;172(3):407–416. doi: 10.1042/bj1720407

The realiability of rates of glucose appearance in vivo calculated from constant tracer infusions.

J R Allsop, R R Wolfe, J F Burke
PMCID: PMC1185714  PMID: 687352

Abstract

The rate of appearance of unlabelled glucose was calculated from tracer data and compared with the actual rate of infusion of unlabelled glucose into a anaesthetized dog with all sources of endogenous glucose production surgically removed. The mean steady-state rate of appearance of unlabelled glucose calculated from the equilibrium specific radioactivity was insignificantly higher (0.3%) than the actual rate of infusion of unlabelled glucose (n = 6). During non-steady states, a time-variable volume of distribution of glucose (V) was necessary to predict the rate of appearance of unlabelled glucose correctly from the pool-dependent equation described by Steele [(1959) Ann. N.Y. Acad. Sci. 82, 420--430]. Rapid fluctuations in the rate of appearance of glucose could be predicted reasonably well by using a fixed value of V for 40ml/kg, but by using larger fixed values for V (100--160ml/kg) the rates were inaccurate. The pool-dependent two-radiactive-isotope technique described by Issekutz, Issekutz & Elahi [(1974) Can. J. Physiol. Pharmacol. 52, 215--224] predicted single-step increases in the rate of infusion of glucose reasonably accurately, but the Steele (1959) equation was better at predicting sequential changes in the rate of infusion of unlabelled glucose.

Full text

PDF
407

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert S. N., Hirsch E. F., Economopoulos B., Albert C. A. Triple-tracer technique for measuring red-blood-cell, plasma and extracellular-fluid volume. J Nucl Med. 1968 Jan;9(1):19–23. [PubMed] [Google Scholar]
  2. Cowan J. S., Hetenyi G., Jr Glucoregulatory responses in normal and diabetic dogs recorded by a new tracer method. Metabolism. 1971 Apr;20(4):360–372. doi: 10.1016/0026-0495(71)90098-9. [DOI] [PubMed] [Google Scholar]
  3. HARRISON F. A., MCDONALD I. R., PATERSON J. Y. COMPARISON OF THE APPARENT RATE OF CORTISOL TURNOVER DETERMINED BY ISOTOPE DILUTION AND CORTISOL SECRETION RATE. J Endocrinol. 1964 Jan;28:173–181. doi: 10.1677/joe.0.0280173. [DOI] [PubMed] [Google Scholar]
  4. HETENYI G., Jr, RAPPAPORT A. M., WRENSHALL G. A. The validity of rates of glucose appearance in the dog calculated by the method of successive tracer injections. I. Effects of surgical hepatectomy, evisceration, and order of tracer injection. Can J Biochem Physiol. 1961 Feb;39:225–236. doi: 10.1139/o61-020. [DOI] [PubMed] [Google Scholar]
  5. Issekutz T. B., Issekutz B., Jr, Elahi D. Estimation of hepatic glucose output in non-steady state. The simultaneous use of 2-3H-glucose and 14C-glucose in the dog. Can J Physiol Pharmacol. 1974 Apr;52(2):215–224. doi: 10.1139/y74-029. [DOI] [PubMed] [Google Scholar]
  6. Kabasakalian P., Kalliney S., Westcott A. Enzymatic blood glucose determination by colorimetry of N,N-diethylaniline-4-aminoantipyrine. Clin Chem. 1974 May;20(5):606–607. [PubMed] [Google Scholar]
  7. Katz J., Rostami H., Dunn A. Evaluation of glucose turnover, body mass and recycling with reversible and irreversible tracers. Biochem J. 1974 Jul;142(1):161–170. doi: 10.1042/bj1420161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kreisberg R. A., Siegal A. M., Owen W. C. Alanine and gluconeogenesis in man: effect of ethanol. J Clin Endocrinol Metab. 1972 May;34(5):876–883. doi: 10.1210/jcem-34-5-876. [DOI] [PubMed] [Google Scholar]
  9. Norwich K. H. Measuring rates of appearance in systems which are not in steady state. Can J Physiol Pharmacol. 1973 Feb;51(2):91–101. doi: 10.1139/y73-012. [DOI] [PubMed] [Google Scholar]
  10. Norwich K. H., Radziuk J., Lau D., Vranic M. Experimental validation of nonsteady rate measurements using a tracer infusion method and inulin as tracer and tracee. Can J Physiol Pharmacol. 1974 Jun;52(3):508–521. doi: 10.1139/y74-068. [DOI] [PubMed] [Google Scholar]
  11. Paterson J. Y., Harrison F. A. The specific activity of plasma cortisol in sheep during continuous infusion of [1,2-3H2]cortisol, and its relation to the rate of cortisol secretion. J Endocrinol. 1967 Mar;37(3):269–277. doi: 10.1677/joe.0.0370269. [DOI] [PubMed] [Google Scholar]
  12. Radziuk J., Norwich K. H., Vranic M. Measurement and validation of nonsteady turnover rates with applications to the inulin and glucose systems. Fed Proc. 1974 Jul;33(7):1855–1864. [PubMed] [Google Scholar]
  13. SEARLE G. L., STRISOWER E. H., CHAIKOFF I. L. Glucose pool and glucose space in the normal and diabetic dog. Am J Physiol. 1954 Feb;176(2):190–194. doi: 10.1152/ajplegacy.1954.176.2.190. [DOI] [PubMed] [Google Scholar]
  14. STEELE R., BISHOP J. S., DUNN A., ALTSZULER N., RATHBEB I., DEBODO R. C. INHIBITION BY INSULIN OF HEPATIC GLUCOSE PRODUCTION IN THE NORMAL DOG. Am J Physiol. 1965 Feb;208:301–306. doi: 10.1152/ajplegacy.1965.208.2.301. [DOI] [PubMed] [Google Scholar]
  15. STEELE R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959 Sep 25;82:420–430. doi: 10.1111/j.1749-6632.1959.tb44923.x. [DOI] [PubMed] [Google Scholar]
  16. STEELE R. REFLECTIONS ON POOLS. Fed Proc. 1964 May-Jun;23:671–679. [PubMed] [Google Scholar]
  17. STEELE R., WALL J. S., DE BODO R. C., ALTSZULER N. Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am J Physiol. 1956 Sep;187(1):15–24. doi: 10.1152/ajplegacy.1956.187.1.15. [DOI] [PubMed] [Google Scholar]
  18. STETTEN D., Jr, WELT I. D., INGLE D. J., MORLEY E. H. Rates of glucose production and oxidation in normal and diabetic rats. J Biol Chem. 1951 Oct;192(2):817–830. [PubMed] [Google Scholar]
  19. Steele R., Rostami H., Altszuler N. A two-compartment calculator for the dog glucose pool in the nonsteady state. Fed Proc. 1974 Jul;33(7):1869–1876. [PubMed] [Google Scholar]
  20. Van Liew H. D. Semilogarithmic Plots of Data Which Reflect a Continuum of Exponential Processes. Science. 1962 Nov 9;138(3541):682–683. doi: 10.1126/science.138.3541.682. [DOI] [PubMed] [Google Scholar]
  21. Vranic M. Tracer methodology and glucose turnover. An overview. Fed Proc. 1974 Jul;33(7):1837–1840. [PubMed] [Google Scholar]
  22. WALSER M., SELDIN D. W., GROLLMAN A. An evaluation of radiosulfate for the determination of the volume of extracellular fluid in man and dogs. J Clin Invest. 1953 Apr;32(4):299–311. doi: 10.1172/JCI102739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WRENSHALL G. A., HETENYI G., Jr, BEST C. H. The validity of rates of glucose appearance in the dog calculated by the method of successive tracer injections. II. The influence of intermixing time following tracer injection. Can J Biochem Physiol. 1961 Feb;39:267–278. doi: 10.1139/o61-025. [DOI] [PubMed] [Google Scholar]
  24. White R. G., Steel J. W., Leng R. A., Luick J. R. Evaluation of three isotope-dilution techniques for studying the kinetics of glucose metabolism in sheep. Biochem J. 1969 Sep;114(2):203–214. doi: 10.1042/bj1140203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wolfe R. R., Burke J. F. Effect of burn trauma on glucose turnover, oxidation, and recycling in guinea pigs. Am J Physiol. 1977 Aug;233(2):E80–E85. doi: 10.1152/ajpendo.1977.233.2.E80. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES