Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Jun 15;172(3):433–442. doi: 10.1042/bj1720433

Adenosine 3′:5′-cyclic monophosphate-dependent protein kinase(s) of rat ovarian cells. Gonadotropin regulation of adenosine 3′:5′-cyclic monophosphate-receptor activity

K M Jairam Menon 1, Salman Azhar 1
PMCID: PMC1185717  PMID: 210760

Abstract

Regulation of cyclic AMP-dependent protein kinase, cyclic AMP-receptor activity and intracellular cyclic AMP concentrations by choriogonadotropin was studied in ovarian cells prepared from 26-day-old rats. A close correlation was observed between phospho-transferase activity and cyclic AMP-receptor activity in 12000g supernatant fractions from rat ovarian homogenate. The apparent activation constant (Ka) and I50 (concentration required to produce 50% inhibition) of different cyclic nucleotides for phosphotransferase and cyclic AMP receptor activities respectively were also determined. Cyclic AMP and 8-bromo cyclic AMP were most effective, giving Ka values of 0.08 and 0.09μm and I50 of 0.12 and 0.16μm respectively. Other nucleotides were also effective, but required higher concentrations to give a comparable effect. An increased concentration of cyclic AMP produced by choriogonadotropin (1μg/ml) treatment was accompanied by decreased cyclic AMP binding as early as 5min after hormone addition. Choriogonadotropin also stimulated the protein kinase activity ratio (−cyclic AMP/+cyclic AMP) under identical experimental conditions. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine potentiated the action of choriogonadotropin on the three parameters measured in a dose- and time-dependent manner. The maximal cyclic AMP-binding capacity, as determined by cyclic AMP-exchange assay, remained unchanged before and after hormone addition. The endogenously bound cyclic AMP was determined from the difference between the maximal binding capacity and the exogenously bound cyclic AMP. With different choriogonadotropin concentrations, a quantitative correlation was established between maximal binding capacity, exogenous binding and endogenous binding activities. Approx. 60% of total binding sites were endogenously occupied in untreated cells, and choriogonadotropin (1μg/ml) treatment fully saturated available binding sites with a parallel 10-fold increase in cellular cyclic AMP. The present results provide evidence for a probable intracellular compartmentalization of cyclic AMP in the ovarian cell, and suggest that in the unstimulated state all cyclic AMP present in the ovarian cell may not be available for protein kinase activation.

Full text

PDF
433

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An ATP pool with rapid turnover within the cell membrane. Biochem Biophys Res Commun. 1972 Aug 7;48(3):598–604. doi: 10.1016/0006-291x(72)90390-7. [DOI] [PubMed] [Google Scholar]
  2. Appleman M. M., Birnbaumer L., Torres H. N. Factors affecting the activity of muscle glycogen synthetase. 3. The reaction with adenosine triphosphate Mg++, and cyclic 3'5'-adenosine monophosphate. Arch Biochem Biophys. 1966 Sep 26;116(1):39–43. doi: 10.1016/0003-9861(66)90009-9. [DOI] [PubMed] [Google Scholar]
  3. Ashby C. D., Walsh D. A. Characterization of the interaction of a protein inhibitor with adenosine 3',5'-monophosphate-dependent protein kinases. I. Interaction with the catalytic subunit of the protein kinase. J Biol Chem. 1972 Oct 25;247(20):6637–6642. [PubMed] [Google Scholar]
  4. Azhar S., Clark M. R., Menon K. M. Regulation of cyclic adenosine 3', 5' -mono-phosphate dependent protein kinase of rat ovarian cells by luteinizing hormone and human chorionic gonadotropin. Endocr Res Commun. 1976;3(2):93–104. doi: 10.3109/07435807609052925. [DOI] [PubMed] [Google Scholar]
  5. Azhar S., Menon K. M. Adenosine 3':5'-cyclic monophosphate-dependent and plasma-membrane-associated protein kinase(s) from bovine corpus luteum. Biochem J. 1975 Oct;151(1):23–36. doi: 10.1042/bj1510023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Azhar S., Menon K. M. Solubilization and characterization of phosphoprotein phosphatase(s) from bovine corpus-luteum plasma membranes. Eur J Biochem. 1975 Jul 15;55(3):487–495. doi: 10.1111/j.1432-1033.1975.tb02186.x. [DOI] [PubMed] [Google Scholar]
  7. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beavo J. A., Bechtel P. J., Krebs E. G. Activation of protein kinase by physiological concentrations of cyclic AMP. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3580–3583. doi: 10.1073/pnas.71.9.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Birnbaum M. J., Fain J. N. Activation of protein kinase and glycogen phosphorylase in isolated rat liver cells by glucagon and catecholamines. J Biol Chem. 1977 Jan 25;252(2):528–535. [PubMed] [Google Scholar]
  10. Boudreau R. J., Drummond G. I. A modified assay of 3':5'-cyclic-AMP phosphodiesterase. Anal Biochem. 1975 Feb;63(2):388–399. doi: 10.1016/0003-2697(75)90361-9. [DOI] [PubMed] [Google Scholar]
  11. Byus C. V., Chubb J. M., Huxtable R. J., Russell D. H. Increase in type I adenosine 3',5'-monophosphate-dependent protein kinase during isoproterenol-induced cardiac hypertrophy. Biochem Biophys Res Commun. 1976 Dec 6;73(3):694–702. doi: 10.1016/0006-291x(76)90866-4. [DOI] [PubMed] [Google Scholar]
  12. Clark M. R., Azhar S., Menon K. M. Ovarian adenosine 3':5'-cyclic monophosphate-dependent protein kinase(s). Regulation by choriogonadotropin and lutropin in rat ovarian cells. Biochem J. 1976 Aug 15;158(2):175–182. doi: 10.1042/bj1580175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clark M. R., Menon K. M. Regulation of ovarian steroidogenesis. The disparity between 125I-labelled choriogonadotropin binding cyclic adenosine 3',5'-monophosphate formation and progesterone synthesis in the rat ovary. Biochim Biophys Acta. 1976 Aug 24;444(1):23–32. doi: 10.1016/0304-4165(76)90220-8. [DOI] [PubMed] [Google Scholar]
  14. Cooke B. A., Lindh M. L., Janszen F. H. Correlation of protein kinase activation and testosterone production after stimulation of Leydig cells with luteinizing hormone. Biochem J. 1976 Dec 15;160(3):439–446. doi: 10.1042/bj1600439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cooke B. A., van der Kemp A. J. Protein kinase activity in rat testis interstitial tissue. Effect of luteinizing hormone and other factors. Biochem J. 1976 Feb 15;154(2):371–378. doi: 10.1042/bj1540371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Corbin J. D., Soderling T. R., Park C. R. Regulation of adenosine 3',5'-monophosphate-dependent protein kinase. I. Preliminary characterization of the adipose tissue enzyme in crude extracts. J Biol Chem. 1973 Mar 10;248(5):1813–1821. [PubMed] [Google Scholar]
  17. Corbin J. D., Sugden P. H., Lincoln T. M., Keely S. L. Compartmentalization of adenosine 3':5'-monophosphate and adenosine 3':5'-monophosphate-dependent protein kinase in heart tissue. J Biol Chem. 1977 Jun 10;252(11):3854–3861. [PubMed] [Google Scholar]
  18. Dufau M. L., Tsuruhara T., Horner K. A., Podesta E., Catt K. J. Intermediate role of adenosine 3':5'-cyclic monophosphate and protein kinase during gonadotropin-induced steroidogenesis in testicular interstitial cells. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3419–3423. doi: 10.1073/pnas.74.8.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Field J. B., Bloom G., Kerins M. E., Chayoth R., Zor U. Activation of protein kinase in thyroid slices by thyroid-stimulating hormone. J Biol Chem. 1975 Jul 10;250(13):4903–4910. [PubMed] [Google Scholar]
  20. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Haddox M. K., Newton N. E., Hartle D. K., Goldberg N. D. ATP(Mg 2+ ) induced inhibition of cyclic AMP reactivity with a skeletal muscle protein kinase. Biochem Biophys Res Commun. 1972 May 26;47(4):653–661. doi: 10.1016/0006-291x(72)90542-6. [DOI] [PubMed] [Google Scholar]
  23. Kawano A., Gunaga K. P., Menon K. M. Stimulatory effect of gonadotropins on the synthesis of adenosine 3': 5'-cyclic monophosphate and progesterone by suspensions of rat ovarian interstitial cells. Biochim Biophys Acta. 1975 Mar 14;385(1):88–100. doi: 10.1016/0304-4165(75)90077-x. [DOI] [PubMed] [Google Scholar]
  24. Keely S. L., Corbin J. D., Park C. R. Regulation of adenosine 3:5-monophosphate-dependent protein kinase. J Biol Chem. 1975 Jul 10;250(13):4832–4840. [PubMed] [Google Scholar]
  25. Keely S. L., Jr, Corbin J. D., Park C. R. On the question of translocation of heart cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1501–1504. doi: 10.1073/pnas.72.4.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Khac L. D., Harbon S., Clauser H. J. Intracellular titration of cyclic AMP bound to receptor proteins and correlation with cyclic-AMP levels in the surviving rat diaphragm. Eur J Biochem. 1973 Dec 3;40(1):177–185. doi: 10.1111/j.1432-1033.1973.tb03183.x. [DOI] [PubMed] [Google Scholar]
  27. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. 8. An assay method for the measurement of adenosine 3',5'-monophosphate in various tissues and a study of agents influencing its level in adipose cells. J Biol Chem. 1970 Aug 25;245(16):4067–4073. [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Ling W. Y., Marsh J. M. Reevaluation of the role of cyclic adenosine 3',5'-monophosphate and protein kinase in the stimulation of steroidogenesis by luteinizing hormone in bovine corpus luteum slices. Endocrinology. 1977 Jun;100(6):1571–1578. doi: 10.1210/endo-100-6-1571. [DOI] [PubMed] [Google Scholar]
  30. Means A. R., MacDougall E., Soderling T. R., Corbin J. D. Testicular adenosine 3':5'-monophosphate-dependent protein kinase. Regulation by follicle-stimulating hormone. J Biol Chem. 1974 Feb 25;249(4):1231–1238. [PubMed] [Google Scholar]
  31. Menon K. M., Gunaga K. P. Role of cyclic AMP in reproductive processes. Fertil Steril. 1974 Aug;25(8):732–750. doi: 10.1016/s0015-0282(16)40577-7. [DOI] [PubMed] [Google Scholar]
  32. Menon K. M. Purification and properties of a protein kinase from bovine corpus luteum that is stimulated by cyclic adenosine 3',5'-monophosphate and luteinizing hormone. J Biol Chem. 1973 Jan 25;248(2):494–501. [PubMed] [Google Scholar]
  33. Richardson M. C., Schulster D. The role of protein kinase activation in the control of steroidogenesis by adrenocorticotrophic hormone in the adrenal cortex. Biochem J. 1973 Dec;136(4):993–998. doi: 10.1042/bj1360993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rubin C. S., Erlichman J., Rosen O. M. Cyclic adenosine 3',5'-monophosphate-dependent protein kinase of human erythrocyte membranes. J Biol Chem. 1972 Oct 10;247(19):6135–6139. [PubMed] [Google Scholar]
  35. Rubin C. S., Rosen O. M. Protein phosphorylation. Annu Rev Biochem. 1975;44:831–887. doi: 10.1146/annurev.bi.44.070175.004151. [DOI] [PubMed] [Google Scholar]
  36. Sanborn B. M., Bhalla R. C., Korenman S. G. The endometrial adenosine cyclic 3':5'-monophosphate-dependent protein kinase. Distribution, subunit structure, and kinetics of adenosine cyclic 3':5'-monophosphate binding. J Biol Chem. 1973 May 25;248(10):3593–3600. [PubMed] [Google Scholar]
  37. Skala J. P., Knight B. L. Portein kinases in brown adipose tissue of developing rats. State of activation of protein kinase during development and cold exposure and its relationship to adenosine 3':5'-monophosphate, lipolysis, and heat production. J Biol Chem. 1977 Feb 10;252(3):1064–1070. [PubMed] [Google Scholar]
  38. Soderling T. R., Corbin J. D., Park C. R. Regulation of adenosine 3',5'-monophosphate-dependent protein kinase. II. Hormonal regulation of the adipose tissue enzyme. J Biol Chem. 1973 Mar 10;248(5):1822–1829. [PubMed] [Google Scholar]
  39. Spaulding S. W., Burrow G. N. Beta-adrenergic stimulation of cyclic AMP and protein kinase activity in the thyroid. Nature. 1975 Mar 27;254(5498):347–349. doi: 10.1038/254347a0. [DOI] [PubMed] [Google Scholar]
  40. Spaulding S. W., Burrow G. N. Effect of PGE1 and TSH on cAMP-dependent protein kinase activity in the thyroid. Endocrinology. 1975 Apr;96(4):1018–1021. doi: 10.1210/endo-96-4-1018. [DOI] [PubMed] [Google Scholar]
  41. Swillens S., Van Cauter E., Dumont J. E. Protein kinase and cyclic 3',5'-AMP: significance of binding and activation constants. Biochim Biophys Acta. 1974 Oct 17;364(2):250–259. doi: 10.1016/0005-2744(74)90011-4. [DOI] [PubMed] [Google Scholar]
  42. Terasaki W. L., Brooker G. Cardiac adenosine 3':5'-monophosphate. Free and bound forms in the isolated rat atrium. J Biol Chem. 1977 Feb 10;252(3):1041–1050. [PubMed] [Google Scholar]
  43. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
  44. Vaitukaitis J. L., Lee C. Y., Ebersole E. R., Lerario A. C. New evidence for an acute role of protein kinase in hCG action. Endocrinology. 1975 Jul;97(1):215–222. doi: 10.1210/endo-97-1-215. [DOI] [PubMed] [Google Scholar]
  45. Walaas O., Walaas E., Gronnerod O. Hormonal regulation of cyclic-AMP-dependent protein kinase of rat diaphragm by epinephrine and insulin. Eur J Biochem. 1973 Dec 17;40(2):465–477. doi: 10.1111/j.1432-1033.1973.tb03215.x. [DOI] [PubMed] [Google Scholar]
  46. Wilchek M., Salomon Y., Lowe M., Selinger Z. Conversion of protein kinase to a cyclic AMP independent form by affinity chromatography on N 6 -caproyl 3',5'-cyclic adenosine monophosphate-sepharose. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1177–1184. doi: 10.1016/0006-291x(71)90142-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES