Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Jul 1;173(1):85–93. doi: 10.1042/bj1730085

Properties of matrix-bound dimer and monomer derivatives of immobilized creatine kinase from rabbit skeletal muscle.

G F Bickerstaff, N C Price
PMCID: PMC1185752  PMID: 28737

Abstract

Dimeric creatine kinase (EC 2.7.3.2) from rabbit skeletal muscle can be immobilized via a single subunit to CNBr-activated Sepharose 4B and subsequently treated with guanidine hydrochloride followed by renaturation to yield a catalytically active matrix-bound subunit derivative. The importance of the intact dimeric structure in the activation of the enzyme by acetate was demonstrated. Immobilization did not appear to alter the pH optimum of the enzyme, and the kinetic parameters fot the matrix-bound derivatives were generally similar to those for the soluble enzyme, but the matrix-bound derivatives showed higher thermal stability and greater resistance to denaturation than did the soluble enzyme. The rates of reaction of thiol groups of the matrix-bound derivatives with iodoacetamide in the absence and in the presence of combinations of substrates were similar to those of the soluble enzyme. Studies with 5,5'-dithiobis-(2-nitrobenzoic acid) and with iodoacetamide revealed the presence of an additional reactive thiol group in the matrix-bound subunit derivative, which is presumably masked in the dimeric derivatives.

Full text

PDF
85

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anosike E. O., Moreland B. H., Watts D. C. Evolutionary variation between a monomer and a dimer arginine kinase. Purification of the enzyme from Holothuria forskali and a comparison of some properties with that from Homarus vulgaris. Biochem J. 1975 Mar;145(3):535–543. doi: 10.1042/bj1450535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bickerstaff G. F., Price N. C. Evidence for active subunits of matrix-bound creatine kinase. FEBS Lett. 1976 May 1;64(2):319–322. doi: 10.1016/0014-5793(76)80319-5. [DOI] [PubMed] [Google Scholar]
  3. Bickerstaff G. F., Price N. C. Reversible denaturation of rabbit muscle creatine kinase [proceedings]. Biochem Soc Trans. 1977;5(3):761–764. doi: 10.1042/bst0050761. [DOI] [PubMed] [Google Scholar]
  4. Bickerstaff G. F., Price N. C. The influence of acetate on matrix-bound creatine kinase. Biochem Soc Trans. 1976;4(6):1061–1063. doi: 10.1042/bst0041061. [DOI] [PubMed] [Google Scholar]
  5. Bruch P., Schnackerz K. D., Gracy R. W. Matrix-bound phosphoglucose isomerase. Formation and properties of monomers and hybrids. Eur J Biochem. 1976 Sep;68(1):153–158. doi: 10.1111/j.1432-1033.1976.tb10773.x. [DOI] [PubMed] [Google Scholar]
  6. Buttlaire D. H., Cohn M. Characterization of the active site structures of arginine kinase-substrate complexes. Water proton magnetic relaxation rates and electron paramagnetic resonance spectra of manganous-enzyme complexes with substrates and of a transition state analog. J Biol Chem. 1974 Sep 25;249(18):5741–5748. [PubMed] [Google Scholar]
  7. Carvajal N., Martinez J., Fernandez M. Immobilised monomers of human liver arginase. Biochim Biophys Acta. 1977 Mar 15;481(1):177–183. doi: 10.1016/0005-2744(77)90149-8. [DOI] [PubMed] [Google Scholar]
  8. Chan W. W. Matrix-bound protein subunits. Biochem Biophys Res Commun. 1970 Dec 9;41(5):1198–1204. doi: 10.1016/0006-291x(70)90213-5. [DOI] [PubMed] [Google Scholar]
  9. Chan W. W., Mort J. S., Chong D. K., Macdonald P. D. Studies on protein subunits. 3. Kinetic evidence for the presence of active subunits during the renaturation of muscle aldolase. J Biol Chem. 1973 Apr 25;248(8):2778–2784. [PubMed] [Google Scholar]
  10. Chan W. W., Mosbach K. Effects of subunit interactions on the activity of lactate dehydrogenase studied in immobilized enzyme systems. Biochemistry. 1976 Sep 21;15(19):4215–4222. doi: 10.1021/bi00664a013. [DOI] [PubMed] [Google Scholar]
  11. Chan W. W., Schutt H., Brand K. Active subunits of transaldolase bound to sepharose. Eur J Biochem. 1973 Dec 17;40(2):533–541. doi: 10.1111/j.1432-1033.1973.tb03224.x. [DOI] [PubMed] [Google Scholar]
  12. Chan W. W. Some experimental approaches for studying subunit interactions in enzymes. Can J Biochem. 1976 Jun;54(6):521–528. doi: 10.1139/o76-076. [DOI] [PubMed] [Google Scholar]
  13. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  14. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  15. FLORINI J. R., VESTLING C. S. Graphical determination of the dissociation constants for two-substrate enzyme systems. Biochim Biophys Acta. 1957 Sep;25(3):575–578. doi: 10.1016/0006-3002(57)90529-2. [DOI] [PubMed] [Google Scholar]
  16. Fukui S., Ikeda S., Fujimura M., Yamada H., Kumagai H. Comparative studies on the properties of tryptophanase and tyrosine phenol-lyase immobilized directly on Sepharose or by use of Sepharose-bound pyridoxal 5'-phosphate. Eur J Biochem. 1975 Feb 3;51(1):155–164. doi: 10.1111/j.1432-1033.1975.tb03916.x. [DOI] [PubMed] [Google Scholar]
  17. Goheer M. A., Gould B. J., Parke D. V. Preparation of immobilized baker's-yeast glucose 6-phosphate dehydrogenase attached to modified sepharose and sephadex and a comparison of the properties of these preparations with those of the soluble enzyme. Biochem J. 1976 Aug 1;157(2):289–294. doi: 10.1042/bj1570289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grazi E., Magri E., Traniello S. Active subunits of rabbit liver fructose diphosphatase. Biochem Biophys Res Commun. 1973 Oct 15;54(4):1321–1325. doi: 10.1016/0006-291x(73)91131-5. [DOI] [PubMed] [Google Scholar]
  19. Griffiths J. R., Price N. C., Radda G. K. A kinetic method to establish the specificity of spin labelling of macromolecules. Biochem J. 1975 Jun;147(3):609–612. doi: 10.1042/bj1470609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. James T. L., Cohn M. The role of the lysyl residue at the active site of creatine kinase. Nuclear Overhauser effect studies. J Biol Chem. 1974 Apr 25;249(8):2599–2604. [PubMed] [Google Scholar]
  21. March S. C., Parikh I., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem. 1974 Jul;60(1):149–152. doi: 10.1016/0003-2697(74)90139-0. [DOI] [PubMed] [Google Scholar]
  22. Milner-White E. J., Kelly I. D. Creatine kinase. Modification of the working enzyme. Biochem J. 1976 Jul 1;157(1):23–31. doi: 10.1042/bj1570023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Milner-White E. J., Watts D. C. Inhibition of adenosine 5'-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site. Biochem J. 1971 May;122(5):727–740. doi: 10.1042/bj1220727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mort J. S., Chong D. K., Chan W. W. Continuous spectrophotometric assay of a sepharose-bound enzyme and its use to study kinetics of coupling of the enzyme to sepharose. Anal Biochem. 1973 Mar;52(1):162–168. doi: 10.1016/0003-2697(73)90341-2. [DOI] [PubMed] [Google Scholar]
  25. NODA L., NIHEI T., MORALES M. F. The enzymatic activity and inhibition of adenosine 5'-triphosphate-creatine transphosphorylase. J Biol Chem. 1960 Oct;235:2830–2834. [PubMed] [Google Scholar]
  26. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES