Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Jul 15;174(1):45–51. doi: 10.1042/bj1740045

Reversal by Triton WR-1339 of ethynyloestradiol-induced hepatic cholesterol esterification

Roger A Davis 1,*, Radene Showalter 1, Fred Kern Jr 1
PMCID: PMC1185883  PMID: 697762

Abstract

Rats treated with ethynyloestradiol have marked hypolipidaemia: serum cholesterol is decreased to 5%, triacylglycerol to 10% and phospholipid to 70% of control concentrations. Loss of serum cholesterol follows an exponential decay, with a half-life of 1.13±0.09 days. After 4 days of treatment, serum cholesterol concentrations remain relatively constant (ranging from 1 to 20mg/100ml) for at least 30 days. There is a concomitant 20-fold decrease in the d<1.21 fraction of serum proteins and a similar decrease in serum apolipoproteins as measured by sodium dodecyl sulphate/10%-polyacrylamide-gel electrophoresis. The activity of hepatic microsomal acyl-CoA–cholesterol O-acetyltransferase (EC 2.3.1.26) was significantly increased by ethynyloestradiol treatment (P<0.05). This activation caused hepatic cholesteryl esters containing mainly C18:1 fatty acids to increase linearly as serum cholesterol concentrations decreased (r=0.9675, P<0.001). Triton WR-1339, a non-ionic detergent that inhibits lipoprotein catabolism, was used to estimate hepatic lipid secretion by measuring the increment in serum lipids after its administration. At 15h after Triton WR-1339 administration, serum cholesterol concentrations were increased equally in both control and ethynyloestradiol-treated rats. In contrast, the increment of serum triacylglycerol of treated rats was 40% of that found in control rats, indicating that ethynyloestradiol inhibits hepatic triacylglycerol secretion. Triton WR-1339 inhibited the oestrogen activation of hepatic microsomal acyl-CoA–cholesterol O-acyltransferase and restored hepatic cholesteryl ester concentrations to normal values. These data suggest that ethynyloestradiol and its pharmacological `antagonist' Triton WR-1339 alter hepatic triacylglycerol secretion via a mechanism associated with changes in hepatic cholesterol esterification.

Full text

PDF
45

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aftergood L., Hernandez H. J., Alfin-Slater R. B. Effect of large doses of the oral contraceptive Enovid on cholesterol metabolism in the rat. J Lipid Res. 1968 Jul;9(4):447–452. [PubMed] [Google Scholar]
  2. BYERS S. O., FIEDMAN M., SUGIYAMA T. Triton hypercholesteremia: cause or consequence of augmented cholesterol synthesis. Am J Physiol. 1963 Jun;204:1100–1102. doi: 10.1152/ajplegacy.1963.204.6.1100. [DOI] [PubMed] [Google Scholar]
  3. Brown M. S., Goldstein J. L. Receptor-mediated control of cholesterol metabolism. Science. 1976 Jan 16;191(4223):150–154. doi: 10.1126/science.174194. [DOI] [PubMed] [Google Scholar]
  4. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis R. A., Kern F., Jr Effects of ethinyl estradiol and phenobarbital on bile acid synthesis and biliary bile acid and cholesterol excretion. Gastroenterology. 1976 Jun;70(6):1130–1135. [PubMed] [Google Scholar]
  6. Deckelbaum R. J., Tall A. R., Small D. M. Interaction of cholesterol ester and triglyceride in human plasma very low density lipoprotein. J Lipid Res. 1977 Mar;18(2):164–168. [PubMed] [Google Scholar]
  7. Fewster M. E., Pirrie R. E., Turner D. A. Effect of estradiol benzoate on lipid metabolism in the rat. Endocrinology. 1967 Feb;80(2):263–271. doi: 10.1210/endo-80-2-263. [DOI] [PubMed] [Google Scholar]
  8. GOODMAN D. S., DEYKIN D., SHIRATORI T. THE FORMATION OF CHOLESTEROL ESTERS WITH RAT LIVER ENZYMES. J Biol Chem. 1964 May;239:1335–1345. [PubMed] [Google Scholar]
  9. Goh E. H., Heimberg M. Effect of oleic acid and cholesterol on the activity of hepatic hydroxymethylglutaryl coenzyme A reductase. FEBS Lett. 1976 Mar 15;63(1):209–210. doi: 10.1016/0014-5793(76)80228-1. [DOI] [PubMed] [Google Scholar]
  10. Goh E. H., Heimberg M. Effects of free fatty acids on activity of hepatic microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase and on secretion of triglyceride and cholesterol by liver. J Biol Chem. 1977 May 10;252(9):2822–2826. [PubMed] [Google Scholar]
  11. Goodman D. S. Cholesterol ester metabolism. Physiol Rev. 1965 Oct;45(4):747–839. doi: 10.1152/physrev.1965.45.4.747. [DOI] [PubMed] [Google Scholar]
  12. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hay R. V., Pottenger L. A., Reingold A. L., Getz G. S., Wissler R. W. Degradation of I 125 -labelled serum low density lipoprotein in normal and estrogen-treated male rats. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1471–1477. doi: 10.1016/s0006-291x(71)80251-6. [DOI] [PubMed] [Google Scholar]
  14. Katz S. S., Shipley G. G., Small D. M. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Invest. 1976 Jul;58(1):200–211. doi: 10.1172/JCI108450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klauda H. C., Zilversmit D. B. Influx of cholesterol into plasma in rabbits with fasting hyperbetalipoproteinemia. J Lipid Res. 1974 Nov;15(6):593–601. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Mackinnon M., Simon F. Pharmacological reversal of cholestasis-associated decrease in hepatic cytochrome P-450. Biochem Pharmacol. 1975 Mar 15;24(6):748–749. doi: 10.1016/0006-2952(75)90256-7. [DOI] [PubMed] [Google Scholar]
  18. Mahaffee D., Reitz R. C., Ney R. L. The mechanism of action of adrenocroticotropic hormone. The role of mitochondrial cholesterol accumulation in the regulation of steroidogenesis. J Biol Chem. 1974 Jan 10;249(1):227–233. [PubMed] [Google Scholar]
  19. ORMOND A. P., Jr, RIVERA-VELEZ J. M. BLOOD VOLUME IN RELATION TO BODY WEIGHT OF THE MALE RAT USING RADIO-IODINATED SERUM ALBUMIN. Proc Soc Exp Biol Med. 1965 Mar;118:600–602. doi: 10.3181/00379727-118-29915. [DOI] [PubMed] [Google Scholar]
  20. Ogura M., Shiga J., Yamasaki K. Studies on the cholesterol pool as the precursor of bile acids in the rat. J Biochem. 1971 Dec;70(6):967–972. doi: 10.1093/oxfordjournals.jbchem.a129726. [DOI] [PubMed] [Google Scholar]
  21. Schweppe J. S., Jungmann R. A. The effect of hormones on hepatic cholesterol ester synthesis in vitro. Proc Soc Exp Biol Med. 1969 Jul;131(3):868–870. doi: 10.3181/00379727-131-33997. [DOI] [PubMed] [Google Scholar]
  22. Shiff T. S., Roheim P. S., Eder H. A. Effects of high sucrose diets and 4-aminopyrazolopyrimidine on serum lipids and lipoproteins in the rat. J Lipid Res. 1971 Sep;12(5):596–603. [PubMed] [Google Scholar]
  23. Simon F. R., Arias I. M. Alteration of bile canalicular enzymes in cholestasis. A possible cause of bile secretory failure. J Clin Invest. 1973 Apr;52(4):765–775. doi: 10.1172/JCI107239. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES