Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Jul 15;174(1):297–301. doi: 10.1042/bj1740297

Phosphorylation of adenosine monophosphate in the mitochondrial matrix.

H A Krebs, D Wiggins
PMCID: PMC1185910  PMID: 697756

Abstract

The origin of the GTP needed for th phosphorylation of AMP in the mitochondrial matrix was investigated. When short-chain fatty acids are metabolized by hepatocytes, AMP is readily formed within the matrix by the butyryl-CoA ligase (AMP-forming) reaction (EC 6.2.1.2). The rate of matrix AMP formation in rat hepatocytes was calculated from the rate of ketone-body formation. The rate of the reconversion of matrix AMP into ADP by GTP-AMP transphosphorylase is limited by the rate of supply of GTP. GTP can be formed either by succinic thiokinase (EC 6.2.1.4) or by nucleoside diphosphokinase (EC 2.7.4.6). The rate of the succinic thiokinase reaction was calculated from turnover of the tricarboxylic acid cycle and this was calculated from the rate of O2 consumption and ketone-body formation. The results show that nucleoside diphosphokinase can make a major contribution (up to 80%) to the supply of GTP under the test conditions.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AYENGAR P., GIBSON D. M., SANADI D. R. Transphosphorylations between nucleoside phosphates. Biochim Biophys Acta. 1956 Jul;21(1):86–91. doi: 10.1016/0006-3002(56)90096-8. [DOI] [PubMed] [Google Scholar]
  2. Aas M., Bremer J. Short-chain fatty acid activation in rat liver. A new assay procedure for the enzymes and studies on their intracellular localization. Biochim Biophys Acta. 1968 Oct 22;164(2):157–166. doi: 10.1016/0005-2760(68)90142-2. [DOI] [PubMed] [Google Scholar]
  3. Brdiczka D., Pette D., Brunner G., Miller F. Kompartimentierte Verteilung von Enzymen in Rattenlebermitochondrien. Eur J Biochem. 1968 Jul;5(2):294–304. doi: 10.1111/j.1432-1033.1968.tb00370.x. [DOI] [PubMed] [Google Scholar]
  4. Cornell N. W., Lund P., Krebs H. A. The effect of lysine on gluconeogenesis from lactate in rat hepatocytes. Biochem J. 1974 Aug;142(2):327–337. doi: 10.1042/bj1420327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garber A. J., Ballard F. J. Regulation of phosphoenolpyruvate metabolism in mitochondria from guinea pig liver. J Biol Chem. 1970 May 10;245(9):2229–2240. [PubMed] [Google Scholar]
  6. Heldt H. W., Schwalbach K. The participation of GTP-AMP-P transferase in substrate level phosphate transfer of rat liver mitochondria. Eur J Biochem. 1967 Apr;1(2):199–206. doi: 10.1007/978-3-662-25813-2_31. [DOI] [PubMed] [Google Scholar]
  7. JENCKS W. P., LIPMANN F. Studies on the initial step of fatty acid activation. J Biol Chem. 1957 Mar;225(1):207–223. [PubMed] [Google Scholar]
  8. Klingenberg M. Metabolite transport in mitochondria: an example for intracellular membrane function. Essays Biochem. 1970;6:119–159. [PubMed] [Google Scholar]
  9. Klingenberg M. Mitochondria metabolite transport. FEBS Lett. 1970 Feb 16;6(3):145–154. doi: 10.1016/0014-5793(70)80044-8. [DOI] [PubMed] [Google Scholar]
  10. MAHLER H. R., WAKIL S. J., BOCK R. M. Studies on fatty acid oxidation. I. Enzymatic activation of fatty acids. J Biol Chem. 1953 Sep;204(1):453–468. [PubMed] [Google Scholar]
  11. Pfaff E., Klingenberg M., Heldt H. W. Unspecific permeation and specific exchange of adenine nucleotides in liver mitochondria. Biochim Biophys Acta. 1965 Jun 15;104(1):312–315. doi: 10.1016/0304-4165(65)90258-8. [DOI] [PubMed] [Google Scholar]
  12. SANADI D. R., GIBSON D. M., AYENGAR P., JACOB M. Alpha-ketoglutaric dehydrogenase. V. Guanosine diphosphate in coupled phosphorylation. J Biol Chem. 1956 Jan;218(1):505–520. [PubMed] [Google Scholar]
  13. SANADI D. R., GIBSON M., AYENGAR P. Guanosine triphosphate, the primary product of phosphorylation coupled to the breakdown of succinyl coenzyme A. Biochim Biophys Acta. 1954 Jul;14(3):434–436. doi: 10.1016/0006-3002(54)90205-x. [DOI] [PubMed] [Google Scholar]
  14. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Williamson J. R., Browning E. T., Scholz R., Kreisberg R. A., Fritz I. B. Inhibition of fatty acid stimulation of gluconeogenesis by (+)-decanoylcarnitine in perfused rat liver. Diabetes. 1968 Apr;17(4):194–208. doi: 10.2337/diab.17.4.194. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES