Abstract
1. The presence of appreciable activity of the urea-cycle enzymes in the tissues of Sarcophaga ruficornis, a carnivorous dipteran insect, all through its life-cycle appears significant in view of their total absence barring arginase (L-arginine ureohydrolase, EC 3.5.3.1) in the phytophagous lepidopteran eri silkwork Philosamia ricini at any stage of development. Further, the variation of all these enzymes all through its development suggests the possibility of the operation of the Krebs-Henseleit urea cycle in this carnivorous insect. 2. The almost parallel behaviour of arginase and ornithine delta-transaminase (L-ornithine-2-oxo acid aminotransferase, EC 2.6.1.13) in both the insects suggests another important role of the former in proline biosynthesis in insects. 3. High proteolytic activity accompanied with significant protein depletion and simultaneous increase in arginine is suggestive of the degradation of proteins and peptides.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- AGRELL I. A contribution to the histolysis-histogenesis problem in insect metamorphosis. Acta Physiol Scand. 1951 Aug 25;23(2-3):179–186. doi: 10.1111/j.1748-1716.1951.tb00807.x. [DOI] [PubMed] [Google Scholar]
- BROWN G. W., Jr, BROWN W. R., COHEN P. P. Comparative biochemistry of urea synthesis. II. Levels of urea cycle enzymes in metamorphosing Rana catesbeiana tadpoles. J Biol Chem. 1959 Jul;234(7):1775–1780. [PubMed] [Google Scholar]
- Eliasson E. E., Strecker H. J. Arginase activity during the growth cycle of Chang's liver cells. J Biol Chem. 1966 Dec 25;241(24):5757–5763. [PubMed] [Google Scholar]
- GARCIA I., ROCHE J., TIXIER M. Sur le métabolisme hydrolytique de l'arginine chez les insectes et sa signification métabolique. C R Seances Soc Biol Fil. 1956 Sep 10;150(4):632–634. [PubMed] [Google Scholar]
- Inokuchi T., Horie Y., Ito T. Urea cycle in the silkworm, BOMBYX MORI. Biochem Biophys Res Commun. 1969 Jun 27;35(6):783–787. doi: 10.1016/0006-291x(69)90691-3. [DOI] [PubMed] [Google Scholar]
- KATUNUMA N., OKADA M., MATSUZAWA T., OTSUKA Y. STUDIES ON ORNITHINE KETOACID TRANSAMINASE. II. ROLE IN METABOLIC PATHWAY. J Biochem. 1965 Mar;57:445–449. doi: 10.1093/oxfordjournals.jbchem.a128099. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laishley E. J., Bernlohr R. W. Regulation of arginine and proline catabolism in Bacillus licheniformis. J Bacteriol. 1968 Aug;96(2):322–329. doi: 10.1128/jb.96.2.322-329.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pant R., Agrawal H. C. Some quantitative changes observed in Philosamia ricini pupal haemolymph during metamorphosis. Biochem J. 1965 Sep;96(3):824–828. doi: 10.1042/bj0960824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pant R., Lal D. M. Variation of free amino acids in Sarcophaga ruficornis during metamorphosis. Indian J Biochem. 1970 Mar;7(1):57–59. [PubMed] [Google Scholar]
- Pant R., Sharma K. K. Amino acid composition of the cuticles of Philosamia ricini during various stages of larval development. Indian J Exp Biol. 1974 Mar;12(2):192–194. [PubMed] [Google Scholar]
- Price G. M. Some aspects of amino acid metabolism in the adult housefly Musca domestica. Biochem J. 1961 Aug;80(2):420–428. doi: 10.1042/bj0800420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raghupathi Reddy S. R., Campbell J. W. Arginine metabolism in insects. Role of arginase in proline formation during silkmoth development. Biochem J. 1969 Nov;115(3):495–503. doi: 10.1042/bj1150495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STRECKER H. J. PURIFICATION AND PROPERTIES OF RAT LIVER ORNITHINE DELTA-TRANSAMINASE. J Biol Chem. 1965 Mar;240:1225–1230. [PubMed] [Google Scholar]
- SZARKOWSKA L., POREMBSKA Z. Arginase in Celerio euphorbiae. Acta Biochim Pol. 1959;6:273–276. [PubMed] [Google Scholar]