Abstract
The increase observed in the amount of the disialoganglioside GDlof the rat cerebrum during development between 21 and 81 days of age accounted for nearly 40% of the overall increase in total ganglioside in the tissue during the same period. Subcellular fractionation showed the microsomal fraction to contribute by far the most towards this increase in Cerebral ganglioside GDla. It is suggested that microsomal ganglioside GDla may serve as a marker for dendritic arborization in the rat cerebrum.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cragg B. G. The development of cortical synapses during starvation in the rat. Brain. 1972;95(1):143–150. doi: 10.1093/brain/95.1.143. [DOI] [PubMed] [Google Scholar]
- EAYRS J. T., HORN G. The development of cerebral cortex in hypothyroid and starved rats. Anat Rec. 1955 Jan;121(1):53–61. doi: 10.1002/ar.1091210105. [DOI] [PubMed] [Google Scholar]
- Eichberg J., Whittaker V. P., Dawson R. M. Distribution of lipids in subcellular particles of guinea-pig brain. Biochem J. 1964 Jul;92(1):91–100. doi: 10.1042/bj0920091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lapetina E. G., Soto E. F., de Robertis E. Gangliosides and acetylcholinesterase in isolated membranes of the rat-brain cortex. Biochim Biophys Acta. 1967 Feb 1;135(1):33–43. doi: 10.1016/0005-2736(67)90005-3. [DOI] [PubMed] [Google Scholar]
- Merat A., Dickerson J. W. The effect of development on the gangliosides of rat and pig brain. J Neurochem. 1973 Mar;20(3):873–880. doi: 10.1111/j.1471-4159.1973.tb00047.x. [DOI] [PubMed] [Google Scholar]
- SUZUKI K. A SIMPLE AND ACCURATE MICROMETHOD FOR QUANTITATIVE DETERMINATION OF GANGLIOSIDE PATTERNS. Life Sci. 1964 Nov;3:1227–1233. doi: 10.1016/0024-3205(64)90040-2. [DOI] [PubMed] [Google Scholar]
- SVENNERHOLM L. CHROMATOGRAPHIC SEPARATION OF HUMAN BRAIN GANGLIOSIDES. J Neurochem. 1963 Sep;10:613–623. doi: 10.1111/j.1471-4159.1963.tb08933.x. [DOI] [PubMed] [Google Scholar]
- SVENNERHOLM L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957 Jun;24(3):604–611. doi: 10.1016/0006-3002(57)90254-8. [DOI] [PubMed] [Google Scholar]
- Schwarz H. P., Kostyk I., Marmolejo A., Sarappa C. Long-chain bases of brain and spinal cord of rabbits. J Neurochem. 1967 Jan;14(1):91–97. doi: 10.1111/j.1471-4159.1967.tb09497.x. [DOI] [PubMed] [Google Scholar]
- Suzaki K. The pattern of mammalian brain gangliosides. 3. Regional and developmental differences. J Neurochem. 1965 Dec;12(12):969–979. doi: 10.1111/j.1471-4159.1965.tb10256.x. [DOI] [PubMed] [Google Scholar]
- Vanier M. T., Holm M., Ohman R., Svennerholm L. Developmental profiles of gangliosides in human and rat brain. J Neurochem. 1971 Apr;18(4):581–592. doi: 10.1111/j.1471-4159.1971.tb11988.x. [DOI] [PubMed] [Google Scholar]
- WOLFE L. S., McILWAIN H. Migration of histones from the nuclei of isolated cerebral tissues kept in cold media. Biochem J. 1961 Jan;78:33–40. doi: 10.1042/bj0780033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yusuf H. K., Merat A., Dickerson J. W. Effect of development on the gangliosides of human brain. J Neurochem. 1977 Jun;28(6):1299–1304. doi: 10.1111/j.1471-4159.1977.tb12323.x. [DOI] [PubMed] [Google Scholar]
