Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Aug 15;174(2):659–662. doi: 10.1042/bj1740659

Stereospecific biosynthesis of triacylglycerols in mammary glands from lactating rats.

S M Cooper, M R Grigor
PMCID: PMC1185961  PMID: 708416

Abstract

Microsomal plus cytosol preparations from the mammary gland of lactating rats are capable of incorporating palmitic acid and oleic acid into triacylglycerols. These triacylglycerols are similar in structure to those found in rat milk, where palmitic acid tends to be confined to the sn-2-position of the glycerol. Both glycerol 3-phosphate and dihydroxyacetone phosphate function as acyl acceptors. The enzymic synthesis of triacylglycerols appears in late pregnancy, increases rapidly during early lactation, but disappears within 3 days of weaning.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin R. L., Milligan L. P. Enzymatic changes associated with the initiation and maintenance of lactation in the rat. J Biol Chem. 1966 May 10;241(9):2058–2066. [PubMed] [Google Scholar]
  2. Bartley J. C., Abraham S., Chaikoff I. L. Activity patterns of several enzymes of liver, adipose tissue, and mammary gland of virgin, pregnant, and lactating mice. Proc Soc Exp Biol Med. 1966 Dec;123(3):670–675. doi: 10.3181/00379727-123-31573. [DOI] [PubMed] [Google Scholar]
  3. Breckenridge W. C., Marai L., Kuksis A. Triglyceride structure of human milk fat. Can J Biochem. 1969 Aug;47(8):761–769. doi: 10.1139/o69-118. [DOI] [PubMed] [Google Scholar]
  4. Brew K., Vanaman T. C., Hill R. L. The role of alpha-lactalbumin and the A protein in lactose synthetase: a unique mechanism for the control of a biological reaction. Proc Natl Acad Sci U S A. 1968 Feb;59(2):491–497. doi: 10.1073/pnas.59.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brockerhoff H., Hoyle R. J., Wolmark N. Positional distribution of fatty acids in triglycerides of animal depot fats. Biochim Biophys Acta. 1966 Feb 1;116(1):67–72. doi: 10.1016/0005-2760(66)90092-0. [DOI] [PubMed] [Google Scholar]
  6. Caffrey M., Kinsella J. E. Growth and acyltransferase activity of rabbit mammary gland during pregnancy and lactation. J Lipid Res. 1977 Jan;18(1):44–52. [PubMed] [Google Scholar]
  7. Chivers L., Knudsen J., Dils R. Immunological properties of medium-chain acyl-thioester hydrolase and fatty acid synthetase from lactating-rabbit mammary gland. Biochim Biophys Acta. 1977 May 25;487(2):361–367. doi: 10.1016/0005-2760(77)90012-1. [DOI] [PubMed] [Google Scholar]
  8. Christie W. W., Moore J. H. A comparison of the structures of triglycerides from various pig tissues. Biochim Biophys Acta. 1970 Jun 9;210(1):46–56. doi: 10.1016/0005-2760(70)90060-3. [DOI] [PubMed] [Google Scholar]
  9. Cohen P., Rosemeyer M. A. Glucose-6-phosphate dehydrogenase from human erythrocytes. Methods Enzymol. 1975;41:208–214. doi: 10.1016/s0076-6879(75)41049-7. [DOI] [PubMed] [Google Scholar]
  10. Knudsen J., Clark S., Dils R. Purification and some properties of a medium-chain acyl-thioester hydrolase from lactating-rabbit mammary gland which terminates chain elongation in fatty acid synthesis. Biochem J. 1976 Dec 15;160(3):683–691. doi: 10.1042/bj1600683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuhn N. J., Lowenstein J. M. Lactogenesis in the rat. Changes in metabolic parameters at parturition. Biochem J. 1967 Dec;105(3):995–1002. doi: 10.1042/bj1050995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lin C. Y., Abraham S., Smith S. Acyl specificity in triglyceride synthesis by lactating rat mammary gland. J Lipid Res. 1976 Nov;17(6):647–656. [PubMed] [Google Scholar]
  14. Mattson F. H., Volpenhein R. A., Lutton E. S. The distribution of fatty acids in the triglycerides of the Artiodactyla (even-toed animals). J Lipid Res. 1964 Jul;5(3):363–365. [PubMed] [Google Scholar]
  15. McLEAN P. Carbohydrate metabolism of mammary tissue. I. Pathways of glucose catabolism in the mammary gland. Biochim Biophys Acta. 1958 Nov;30(2):303–315. doi: 10.1016/0006-3002(58)90055-6. [DOI] [PubMed] [Google Scholar]
  16. REES E. D., EVERSOLE A. RAT MAMMARY GLAND METABOLISM RELATIVE TO EPITHELIAL AND CONNECTIVE TISSUE CONTENT. Am J Physiol. 1964 Sep;207:595–600. doi: 10.1152/ajplegacy.1964.207.3.595. [DOI] [PubMed] [Google Scholar]
  17. Stokes G. B., Poteat L. W., Tove S. B. Distribution of fatty acids incorporated into triacylglycerols by microsome/cytosol preparations from adipose tissue. Biochim Biophys Acta. 1975 Feb 20;380(2):245–256. doi: 10.1016/0005-2760(75)90010-7. [DOI] [PubMed] [Google Scholar]
  18. Stokes G. B., Tove S. B. Evidence for a factor in pig adipose tissue controlling the specificity of the acyltransferase(s) of triacylglycerol synthesis. J Biol Chem. 1975 Aug 25;250(16):6315–6319. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES