Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Sep 15;174(3):1011–1019. doi: 10.1042/bj1741011

Sub-mitochondrial location of Ruthenium Red-sensitive calcium-ion transport and evidence for its enrichment in a specific population of rat liver mitochondria

Fyfe L Bygrave 1, Thomas P Heaney 1, Chidambaram Ramachandran 1
PMCID: PMC1186007  PMID: 728072

Abstract

1. Seven fractions sedimenting at between 3000 and 120000g-min were prepared from a rat liver homogenate by differential centrifugation in buffered iso-osmotic sucrose. The following measurements were carried out on each of these fractions: Ruthenium Red-sensitive Ca2+ transport in the absence and in the presence of Pi as well as in the presence of N-ethylmaleimide to prevent Pi cycling, succinate-supported respiration in the absence and in the presence of ADP, the ΔE and −59 ΔpH components of the protonmotive force, cytochrome oxidase, uncoupler-stimulated adenosine triphosphatase, α-glycerophosphate dehydrogenase, Pi content and the effect on the `resting' rate of respiration of repeated additions of a fixed Ca2+ concentration. 2. Ca2+ transport either in the presence or in the absence of added Pi and in the presence of N-ethylmaleimide exhibits significantly higher rates in the fraction sedimenting at 8000g-min. By contrast, respiration in the presence or in the absence of added ADP and the values for ΔE and −59 ΔpH were similar in those fractions sedimenting between 4000 and 20000g-min, indicating that the driving force for Ca2+ transport was similar in each of these fractions. 3. Experiments designed to determine the capacity of the individual fractions for Ca2+, as measured by the effect of repeated additions of Ca2+ on the resting rate of respiration, showed that fraction 2, i.e. that sedimenting at 8000g-min, also exhibited the greatest tolerance towards the uncoupling action of the ion. 4. Of the three enzyme activity profiles, only that of α-glycerophosphate dehydrogenase was similar to that of Ca2+ transport. Because previous workers have assigned this enzyme to loci in the inner peripheral membrane [Werner & Neupert (1972) Eur. J. Biochem. 25, 379–396], it is concluded that the Ruthenium Red-sensitive Ca2+- transport system also is located in this domain of the inner membrane. The relation of these findings to the mechanisms of mitochondrial Ca2+ transport and the biogenesis of mitochondria is discussed.

Full text

PDF
1011

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E., Wikström M. K., Saris N. E. Effect of inhibitors on the sigmoidicity of the calcium ion transport kinetics in rat liver mitochondria. Biochim Biophys Acta. 1977 Jan 21;464(2):287–294. doi: 10.1016/0005-2736(77)90004-9. [DOI] [PubMed] [Google Scholar]
  2. Binet A., Volfin P. Regulation by Mg2+ and Ca2+ of mitochondrial membrane integrity: study of the effects of a cytosolic molecule and Ca2+ antagonists. Arch Biochem Biophys. 1975 Oct;170(2):576–586. doi: 10.1016/0003-9861(75)90153-8. [DOI] [PubMed] [Google Scholar]
  3. Brdiczka D., Dölken G., Krebs W., Hofmann D. The inner boundary membrane of mitochondria. Localization and biochemical characterization, possible functions in biogenesis and metabolism. Hoppe Seylers Z Physiol Chem. 1974 Jun;355(6):731–743. doi: 10.1515/bchm2.1974.355.1.731. [DOI] [PubMed] [Google Scholar]
  4. Bygrave F. L., Ash G. R. Development of mitochondrial calcium transport activity in rat liver. FEBS Lett. 1977 Aug 15;80(2):271–274. doi: 10.1016/0014-5793(77)80455-9. [DOI] [PubMed] [Google Scholar]
  5. Bygrave F. L., Daday A. A., Doy F. A. Evidence of a calcium-ion-transport system in mitochondria isolated from flight muscle of the developing sheep blowfly Lucilia cuprina. Biochem J. 1975 Mar;146(3):601–608. doi: 10.1042/bj1460601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bygrave F. L. Mitochondria and the control of intracellular calcium. Biol Rev Camb Philos Soc. 1978 Feb;53(1):43–79. doi: 10.1111/j.1469-185x.1978.tb00992.x. [DOI] [PubMed] [Google Scholar]
  7. Bygrave F. L. Properties of energy-dependent calcium transport by rat liver microsomal fraction as revealed by initial-rate measurements. Biochem J. 1978 Jan 15;170(1):87–91. doi: 10.1042/bj1700087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bygrave F. L., Ramachandran C., Smith R. L. On the mechanism by which inorganic phosphate stimulates mitochondrial calcium transport. FEBS Lett. 1977 Nov 1;83(1):155–158. doi: 10.1016/0014-5793(77)80663-7. [DOI] [PubMed] [Google Scholar]
  9. Bygrave F. L., Smith R. L. Dietary-induced modification of calcium transport in mitochondria isolated from flight-muscle of developing sheep blowfly Lucilia cuprina. Biochem Biophys Res Commun. 1977 Nov 7;79(1):154–158. doi: 10.1016/0006-291x(77)90073-0. [DOI] [PubMed] [Google Scholar]
  10. Bygrave F. L., Smith R. L. Inability of tributyltin-induced chloride/hydroxyl exchange to stimulate calcium transport in mitochondria isolated from flight muscle of the sheep blowfly Lucilia cuprina. Biochem J. 1978 Sep 15;174(3):1075–1077. doi: 10.1042/bj1741075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bygrave F. L., Tranter C. J. The subcellular location, maturation and response to increased plasma glucagon of ruthenium red-insensitive calcium-ion transport in rat liver. Biochem J. 1978 Sep 15;174(3):1021–1030. doi: 10.1042/bj1741021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Coty W. A., Pedersen P. L. Phosphate transport in rat liver mitochondria. Kinetics and energy requirements. J Biol Chem. 1974 Apr 25;249(8):2593–2598. [PubMed] [Google Scholar]
  13. Dorman D. M., Barritt G. J., Bygrave F. L. Stimulation of hepatic mitochondrial calcium transport by elevated plasma insulin concentrations. Biochem J. 1975 Sep;150(3):389–395. doi: 10.1042/bj1500389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dulley J. R. Determination of inorganic phosphate in the presence of detergents or protein. Anal Biochem. 1975 Jul;67(1):91–96. doi: 10.1016/0003-2697(75)90275-4. [DOI] [PubMed] [Google Scholar]
  15. Gear A. R. Observations on iron uptake, iron metabolism, cytochrome c content, cytochrome a content and cytochrome c-oxidase activity in regenerating rat liver. Biochem J. 1965 Nov;97(2):532–539. doi: 10.1042/bj0970532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harris E. J., Zaba B. The phosphate requirement for Ca2+-uptake by heart and liver mitochondria. FEBS Lett. 1977 Jul 15;79(2):284–290. doi: 10.1016/0014-5793(77)80804-1. [DOI] [PubMed] [Google Scholar]
  17. Heaton G. M., Nicholls D. G. The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the calcium electrochemical gradient. Biochem J. 1976 Jun 15;156(3):635–646. doi: 10.1042/bj1560635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hutson S. M., Pfeiffer D. R., Lardy H. A. Effect of cations and anions on the steady state kinetics of energy-dependent Ca2+ transport in rat liver mitochondria. J Biol Chem. 1976 Sep 10;251(17):5251–5258. [PubMed] [Google Scholar]
  19. Hutson S. M. Steady state kinetics of energy-dependent Ca2+ uptake in rat liver mitochondria. J Biol Chem. 1977 Jul 10;252(13):4539–4545. [PubMed] [Google Scholar]
  20. Katyare S. S., Fatterpaker P., Sreenivasan A. Heterogeneity of rat liver mitochondrial fractions and the effect of tri-iodothyronine on their protein turnover. Biochem J. 1970 Jun;118(1):111–121. doi: 10.1042/bj1180111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LEE Y. P., LARDY H. A. INFLUENCE OF THYROID HORMONES ON L-ALPHA-GLYCEROPHOSPHATE DEHYDROGENASES AND OTHER DEHYDROGENASES IN VARIOUS ORGANS OF THE RAT. J Biol Chem. 1965 Mar;240:1427–1436. [PubMed] [Google Scholar]
  22. Lehninger A. L. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1520–1524. doi: 10.1073/pnas.71.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Loud A. V. A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol. 1968 Apr;37(1):27–46. doi: 10.1083/jcb.37.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lusena C. V., Depocas F. Heterogeneity and differential fragility of rat liver mitochondria. Can J Biochem. 1966 May;44(5):497–508. doi: 10.1139/o66-060. [DOI] [PubMed] [Google Scholar]
  25. Mitchell P., Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. doi: 10.1111/j.1432-1033.1969.tb19633.x. [DOI] [PubMed] [Google Scholar]
  26. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  27. Panfili E., Sandri G., Sottocasa G. L., Lunazzi G., Liut G., Graziosi G. Specific inhibition of mitochondrial Ca2+ transport by antibodies directed to the Ca2+-binding glycoprotein. Nature. 1976 Nov 11;264(5582):185–186. doi: 10.1038/264185a0. [DOI] [PubMed] [Google Scholar]
  28. Pollak J. K., Munn E. A. The isolation by isopycnic density-gradient centrifugation of two mitochondrial populations from livers of embryonic and fed and starved adult rats. Biochem J. 1970 May;117(5):913–919. doi: 10.1042/bj1170913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pollak J. K. The interdependence of mitochondrial maturation and glycogen metabolism in perinatal rat liver. Biochem Soc Trans. 1977;5(1):341–348. doi: 10.1042/bst0050341. [DOI] [PubMed] [Google Scholar]
  30. Pollak J. K. The maturation of the inner membrane of foetal rat liver mitochondria. Biochem J. 1975 Sep;150(3):477–488. doi: 10.1042/bj1500477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
  32. Ramachandran C., Bygrave F. L. Calcium ion cycling in rat liver mitochondria. Biochem J. 1978 Aug 15;174(2):613–620. doi: 10.1042/bj1740613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reed K. C., Bygrave F. L. A kinetic study of mitochondrial calcium transport. Eur J Biochem. 1975 Jul 15;55(3):497–504. doi: 10.1111/j.1432-1033.1975.tb02187.x. [DOI] [PubMed] [Google Scholar]
  34. Reed K. C., Bygrave F. L. Methodology for in vitro studies of Ca-2+ transport. Anal Biochem. 1975 Jul;67(1):44–54. doi: 10.1016/0003-2697(75)90270-5. [DOI] [PubMed] [Google Scholar]
  35. SZARKOWSKA L., KLINGENBERG M. ON THE ROLE OF UBIQUINONE IN MITOCHONDRIA. SPECTROPHOTOMETRIC AND CHEMICAL MEASUREMENTS OF ITS REDOX REACTIONS. Biochem Z. 1963;338:674–697. [PubMed] [Google Scholar]
  36. Satav J. G., Katyare S. S., Fatterpaker P., Sreenivasan A. Further characterization of rat liver mitochondrial fractions. Lipid composition and synthesis, and protein profiles. Biochem J. 1976 May 15;156(2):215–223. doi: 10.1042/bj1560215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smith R. L., Bygrave F. L. Changes in the response of mitochondrial calcium transport to exogenous phosphate during development in flight muscle of the sheep blowfly Lucilla cuprina. Biochem J. 1978 Jan 15;170(1):81–85. doi: 10.1042/bj1700081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Swick R. W., Tollaksen S. L., Nance S. L., Thomson J. F. Distribution patterns of membrane-bound and soluble enzymes in mitochondrial populations. Arch Biochem Biophys. 1975 May;168(1):281–288. doi: 10.1016/0003-9861(75)90252-0. [DOI] [PubMed] [Google Scholar]
  39. Thorne R. F., Bygrave F. L. The role of mitochondria in modifying the cellular ionic environment. Calcium-induced respiratory activities in mitochondria isolated from various tumour cells. Biochem J. 1974 Dec;144(3):551–558. doi: 10.1042/bj1440551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tolbert N. E. Isolation of subcellular organelles of metabolism on isopycnic sucrose gradients. Methods Enzymol. 1974;31:734–746. doi: 10.1016/0076-6879(74)31077-4. [DOI] [PubMed] [Google Scholar]
  41. Van Berkel T. J., Kruijt J. K. Different types of mitochondria in parenchymal and non-parenchymal rat-liver cells. Eur J Biochem. 1977 Feb 15;73(1):223–229. doi: 10.1111/j.1432-1033.1977.tb11310.x. [DOI] [PubMed] [Google Scholar]
  42. Veldsema-Currie R. D., Slater E. C. Inhibition by anions of dinitrophenol-induced ATPase of mitochondria. Biochim Biophys Acta. 1968 Oct 1;162(3):310–319. doi: 10.1016/0005-2728(68)90117-5. [DOI] [PubMed] [Google Scholar]
  43. Weiss G., Lamartiniere C. A., Müller-Ohly B., Seubert W. The intracellular location of pyruvate carboxylase in rat liver. Eur J Biochem. 1974 Apr 1;43(2):391–403. doi: 10.1111/j.1432-1033.1974.tb03425.x. [DOI] [PubMed] [Google Scholar]
  44. Werner S., Neupert W. Functional and biogenetical heterogeneity of the inner membrane of rat-liver mitochondria. Eur J Biochem. 1972 Feb 15;25(2):379–396. doi: 10.1111/j.1432-1033.1972.tb01707.x. [DOI] [PubMed] [Google Scholar]
  45. Winkler H. H. Localization of the atractyloside-sensitive nucleotide binding sites in rat liver mitochondria. Biochim Biophys Acta. 1969 Oct 21;189(2):152–161. doi: 10.1016/0005-2728(69)90043-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES