Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Oct 1;175(1):193–198. doi: 10.1042/bj1750193

Intramolecular coupling of active sites in the pyruvate dehydrogenase multienzyme complex of Escherichia coli.

M J Danson, E A Hooper, R N Perham
PMCID: PMC1186054  PMID: 367364

Abstract

The intramolecular passage of substrate between the component enzymes of the pyruvate dehydrogenase multienzyme complex of Escherichia coli was examined. A series of partly reassembled complexes, varying only in their E1 (pyruvate decarboxylase, EC 1.2.4.1) content, was incubated with pyruvate in the absence of CoA, conditions under which the lipoic acid residues covalently bound to the E2 (lipoate acetyltransferase, EC2.3.1.12) chains of the complex become reductively acetylated, and the reaction then ceases. The fraction of E2 chains thus acetylated was estimated by specific reaction of the thiol groups in the acetyl-lipoic acid moieties with N-ethyl[2,3-14C]maleimide. The simplest interpretation of the results was that a single E1 dimer is capable of catalysing the rapid acetylation of 8-12 E2 chains, in good agreement with the results of Bates, Danson, Hale, Hooper & Perham [(1977) Nature (London) 268, 313-316]. This novel functional connexion of active sites must be brought about by transacetylation reactions between lipoic acid residues of neighbouring E2 chains in the enzyme complex. There was also a slow transacylation process between the rapidly acetylated lipoic acid residues and those that did not react in the initial, faster phase. This interaction was not investigated in detail, since it is too slow to be of kinetic significance in the normal enzymic reaction.

Full text

PDF
193

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrose M. C., Perham R. N. Spin-label study of the mobility of enzyme-bound lipoic acid in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Biochem J. 1976 May 1;155(2):429–432. doi: 10.1042/bj1550429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bates D. L., Danson M. J., Hale G., Hooper E. A., Perham R. N. Self-assembly and catalytic activity of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Nature. 1977 Jul 28;268(5618):313–316. doi: 10.1038/268313a0. [DOI] [PubMed] [Google Scholar]
  3. Bates D. L., Harrison R. A., Perham R. N. The stoichiometry of polypeptide chains in the pyruvate dehydrogenase multienzyme complex of E. coli determined by a simple novel method. FEBS Lett. 1975 Dec 15;60(2):427–430. doi: 10.1016/0014-5793(75)80764-2. [DOI] [PubMed] [Google Scholar]
  4. Brown J. P., Perham R. N. Selective inactivation of the transacylase components of the 2-oxo acid dehydrogenase multienzyme complexes of Escherichia coli. Biochem J. 1976 May 1;155(2):419–427. doi: 10.1042/bj1550419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coggins J. R., Hooper E. A., Perham R. N. Use of dimethyl suberimidate and novel periodate-cleavable bis(imido esters) to study the quaternary structure of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Biochemistry. 1976 Jun 15;15(12):2527–2533. doi: 10.1021/bi00657a006. [DOI] [PubMed] [Google Scholar]
  6. Collins J. H., Reed L. J. Acyl group and electron pair relay system: a network of interacting lipoyl moieties in the pyruvate and alpha-ketoglutarate dehydrogenase complexes from Escherichia coli. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4223–4227. doi: 10.1073/pnas.74.10.4223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Danson M. J., Perham R. N. Evidence for two lipoic acid residues per lipoate acetyltransferase chain in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Biochem J. 1976 Dec 1;159(3):677–682. doi: 10.1042/bj1590677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GREEN D. E., ODA T. On the unit of mitochondrial structure and function. J Biochem. 1961 Jun;49:742–757. doi: 10.1093/oxfordjournals.jbchem.a127366. [DOI] [PubMed] [Google Scholar]
  9. Grande H. J., Van Telgen H. J., Veeger C. Symmetry and asymmetry of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli as reflected by fluorescence and spin-label studies. Eur J Biochem. 1976 Dec 11;71(2):509–518. doi: 10.1111/j.1432-1033.1976.tb11139.x. [DOI] [PubMed] [Google Scholar]
  10. KOIKE M., REED L. J., CARROLL W. R. alpha-Keto acid dehydrogenation complexes. IV. Resolution and reconstitution of the Escherichia coli pyruvate dehydrogenation complex. J Biol Chem. 1963 Jan;238:30–39. [PubMed] [Google Scholar]
  11. McMinn C. L., Ottaway J. H. Studies on the mechanism and kinetics of the 2-oxoglutarate dehydrogenase system from pig heart. Biochem J. 1977 Mar 1;161(3):569–581. doi: 10.1042/bj1610569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Perham R. N., Hooper E. A. Polypeptide chain stoicheiometry in the self-assembly of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. FEBS Lett. 1977 Feb 1;73(2):137–140. doi: 10.1016/0014-5793(77)80965-4. [DOI] [PubMed] [Google Scholar]
  13. Perham R. N. Self-assembly of biological macromolecules. Philos Trans R Soc Lond B Biol Sci. 1975 Nov 6;272(915):123–136. doi: 10.1098/rstb.1975.0075. [DOI] [PubMed] [Google Scholar]
  14. REED L. J., KOIKE M., LEVITCH M. E., LEACH F. R. Studies on the nature and reactions of protein-bound lipoic acid. J Biol Chem. 1958 May;232(1):143–158. [PubMed] [Google Scholar]
  15. Speckhard D. C., Ikeda B. H., Wong S. S., Frey P. A. Acetylation stoichiometry of Escherichia coli pyruvate dehydrogenase complex. Biochem Biophys Res Commun. 1977 Jul 25;77(2):708–713. doi: 10.1016/s0006-291x(77)80036-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES