Abstract
Ligand-binding equilibria, kinetics and 13C n.m.r. spectra of bound 13CO, of the haemoglobins from two fishes that are very distant on the evolutionary scale, i.e. the fourth haemoglobin component from Salmo irideus and the single component from Osteoglossum bicirrhosum, were studied. The C-terminal sequence was also determined for the haemoglobin from Osteoglossum. The results show that (i) the C-terminal residues of both chains are not directly responsible for the characteristic heterotropic effect known as Root effect, since for both fish haemoglobins these residues are identical with those of human haemoglobins. (ii) In all haemoglobins characterized by the Root effect a dependence of the 13CO n.m.r. resonances on pH is observed. However, the extent of the shift(s) depends on the particular protein, and is probably the result of a combination of both tertiary and quaternary conformational changes. (iii) Both haemoglobins from trout and Osteoglossum manifest a functional heterogeneity between the two types of chains in the tetramer, which increases with proton activity. For CO, the effect is very small for trout haemoglobin IV, and very marked for Osteoglossum haemoglobin; for O2 strongly heterogeneous binding curves were obtained at approx. pH6.2 with both haemoglobins. (iv) Estimations of the relative values of the affinity constants for the α and β chains in the tetramer were obtained for both haemoglobins from 13CO n.m.r. spectra at low fractional saturation. On the basis of these findings the molecular mechanism underlying the Root effect is discussed.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antonini E., Brunori M., Conti F., Geraci G. NMR studies of 13CO-hemoglobin. Alpha and beta chain identification. FEBS Lett. 1973 Aug 1;34(1):69–70. doi: 10.1016/0014-5793(73)80704-5. [DOI] [PubMed] [Google Scholar]
- Binotti I., Giovenco S., Giardina B., Antonini E., Brunori M., Wyman J. Studies on the functional properties of fish hemoglobins. II. The oxygen equilibrium of the isolated hemoglobin components from trout blood. Arch Biochem Biophys. 1971 Jan;142(1):274–280. doi: 10.1016/0003-9861(71)90284-0. [DOI] [PubMed] [Google Scholar]
- Bonaventura C., Bonaventura J., Antonini E., Brunori M., Wyman J. Carbon monoxide binding by simple heme proteins under photodissociating conditions. Biochemistry. 1973 Aug 28;12(18):3424–3428. doi: 10.1021/bi00742a010. [DOI] [PubMed] [Google Scholar]
- Bonaventura J., Bonaventura C., Brunori M., Giardina B., Antonini E., Bossa F., Wyman J. Functional properties of carboxypeptidase-digested hemoglobins. J Mol Biol. 1974 Feb 5;82(4):499–511. doi: 10.1016/0022-2836(74)90244-7. [DOI] [PubMed] [Google Scholar]
- Brunori M., Bonaventura J., Bonaventura C., Giardina B., Bossa F., Antonini E. Hemoglobins from trout: structural and functional properties. Mol Cell Biochem. 1973 Jun 27;1(2):189–196. doi: 10.1007/BF01659329. [DOI] [PubMed] [Google Scholar]
- Brunori M. Molecular adaptation to physiological requirements: the hemoglobin system of trout. Curr Top Cell Regul. 1975;9:1–39. doi: 10.1016/b978-0-12-152809-6.50008-1. [DOI] [PubMed] [Google Scholar]
- Giacometti G. M., Giardina B., Brunori M., Giacometti G., Rigatti G. Observations on CO trout hemoglobins by 13CNMR. FEBS Lett. 1976 Feb 15;62(2):157–160. doi: 10.1016/0014-5793(76)80042-7. [DOI] [PubMed] [Google Scholar]
- Giardina B., Ascoli F., Brunori M. Spectral changes and allosteric transition in trout haemoglobin. Nature. 1975 Aug 28;256(5520):761–762. doi: 10.1038/256761a0. [DOI] [PubMed] [Google Scholar]
- Giardina B., Brunori M., Binotti I., Giovenco S., Antonini E. Studies on the properties of fish hemoglobins. Kinetics of reaction with oxygen and carbon monoxide of the isolated hemoglobin components from trout (Salmo irideus). Eur J Biochem. 1973 Nov 15;39(2):571–579. doi: 10.1111/j.1432-1033.1973.tb03156.x. [DOI] [PubMed] [Google Scholar]
- Giardina B., Brunori M., Hoa G. H., Douzou P. Trout hemoglobin: oxygen binding at sub-zero temperatures. FEBS Lett. 1976 Dec 15;72(1):159–162. doi: 10.1016/0014-5793(76)80835-6. [DOI] [PubMed] [Google Scholar]
- Hayashi A., Suzuki T., Shin M. An enzymic reduction system for metmyoglobin and methemoglobin, and its application to functional studies of oxygen carriers. Biochim Biophys Acta. 1973 Jun 15;310(2):309–316. doi: 10.1016/0005-2795(73)90110-4. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., TenEyck L. F. Stereochemistry of cooperative effects in hemoglobin. Cold Spring Harb Symp Quant Biol. 1972;36:295–310. doi: 10.1101/sqb.1972.036.01.040. [DOI] [PubMed] [Google Scholar]
- Tan A. L., Noble R. W., Gibson Q. H. Conditions restricting allosteric transitions in carp hemoglobin. J Biol Chem. 1973 Apr 25;248(8):2880–2888. [PubMed] [Google Scholar]
- Wyman J., Gill S. J., Noll L., Giardina B., Colosimo A., Brunori M. The balance sheet of a hemoglobin. Thermodynamics of CO binding by hemoglobin trout I. J Mol Biol. 1977 Jan 15;109(2):195–205. doi: 10.1016/s0022-2836(77)80029-6. [DOI] [PubMed] [Google Scholar]
