Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Nov 1;175(2):579–584. doi: 10.1042/bj1750579

Gel-filtration analysis of soluble adenylate cyclase from bovine corpus luteum.

J L Young, D A Stansfield
PMCID: PMC1186106  PMID: 743210

Abstract

1. Sepharose 6B gel-filtration analysis of soluble adenylate cyclase from bovine corpus luteum is described. Both zonal and frontal techniques of analysis were used. 2. Under conditions of zonal analysis recoveries of activity were low. It was concluded that dissociation of two or more components of the adenylate cyclase complex was occurring on the column and that the maintenance of the complex was essential for the high-activity state of the catalytic unit. Two peaks of adenylate cyclase activity, of approximate mol. wts. 45,000 and 160,000 were detected. 3. The theory of frontal analysis (or steady-state gel filtration), applied to the study of the interacting components of the adenylate cyclase complex is discussed, and activity profiles are predicted. Activity profiles obtained experimentally be frontal analysis compared well with the theoretically predicted profile and provide evidence that dissociation of a high-activity complex, with concomitant loss of activity, does occur. Recoveries of activity under conditions of frontal analysis were higher than with zonal analysis. 4. The effects of concentration and removal of detergent on the activity of the soluble enzyme are discussed.

Full text

PDF
579

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckman B., Flores J., Witkum P. A., Sharp G. W. Studies on the mode of action of cholera toxin. Effects on solubilized adenylate cyclase. J Clin Invest. 1974 Apr;53(4):1202–1205. doi: 10.1172/JCI107660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke C. W. Accurate measurement of steroid-protein binding by steady-state gel filtration. Biochim Biophys Acta. 1969 Mar 4;176(2):403–413. doi: 10.1016/0005-2760(69)90199-4. [DOI] [PubMed] [Google Scholar]
  3. Dufau M. L., Baukal A. J., Ryan D., Catt K. J. Properties of detergent-solubilized adenylate cyclase and gonadotropin receptors of testis and ovary. Mol Cell Endocrinol. 1977 Feb;6(4-5):253–269. doi: 10.1016/0303-7207(77)90100-9. [DOI] [PubMed] [Google Scholar]
  4. Forte L. R. Characterization of the adenyl cyclase of rat kidney plasma membranes. Biochim Biophys Acta. 1972 May 9;266(2):524–542. doi: 10.1016/0005-2736(72)90108-3. [DOI] [PubMed] [Google Scholar]
  5. Haga T., Haga K., Gilman A. G. Hydrodynamic properties of the beta-adrenergic receptor and adenylate cyclase from wild type and varient S49 lymphoma cells. J Biol Chem. 1977 Aug 25;252(16):5776–5782. [PubMed] [Google Scholar]
  6. Hanski E., Sevilla N., Levitzki A. The allosteric inhibition by calcium of soluble and partially purified adenylate cyclase from turkey erythrocytes. Eur J Biochem. 1977 Jun 15;76(2):513–520. doi: 10.1111/j.1432-1033.1977.tb11621.x. [DOI] [PubMed] [Google Scholar]
  7. Heyningen S. Activation by cholera toxin of adenylate cyclase solubilized from rat liver. Biochem J. 1976 Sep 1;157(3):785–787. doi: 10.1042/bj1570785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnson R. A., Sutherland E. W. Detergent-dispersed adenylate cyclase from rat brain. Effects of fluoride, cations, and chelators. J Biol Chem. 1973 Jul 25;248(14):5114–5121. [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Levey G. S. Solubilization of myocardial adenyl cyclase. Biochem Biophys Res Commun. 1970 Jan 6;38(1):86–92. doi: 10.1016/0006-291x(70)91087-9. [DOI] [PubMed] [Google Scholar]
  11. Neer E. J. The size of adenylate cyclase. J Biol Chem. 1974 Oct 25;249(20):6527–6531. [PubMed] [Google Scholar]
  12. Neer E. J. Two soluble forms of guanosine 5'-(beta,gamma-imino)triphosphate and fluoride-activated adenylate cyclase. J Biol Chem. 1976 Sep 25;251(18):5831–5834. [PubMed] [Google Scholar]
  13. Pfeuffer T. GTP-binding proteins in membranes and the control of adenylate cyclase activity. J Biol Chem. 1977 Oct 25;252(20):7224–7234. [PubMed] [Google Scholar]
  14. Ross E. M., Gilman A. G. Resolution of some components of adenylate cyclase necessary for catalytic activity. J Biol Chem. 1977 Oct 25;252(20):6966–6969. [PubMed] [Google Scholar]
  15. Ryan J., Storm D. R. Solubilization of glucagon and epinephrine sensitive adenylate cyclase from rat liver plasma membranes. Biochem Biophys Res Commun. 1974 Sep 9;60(1):304–311. doi: 10.1016/0006-291x(74)90205-8. [DOI] [PubMed] [Google Scholar]
  16. Swislocki N. I., Tierney J. Solubilization, stabilization, and partial purification of brain adenylate cyclase from rat. Biochemistry. 1973 May 8;12(10):1862–1866. doi: 10.1021/bi00734a004. [DOI] [PubMed] [Google Scholar]
  17. Varimo K., Londesborough J. Solubilization and other studies on adenylate cyclase of baker's yeast. Biochem J. 1976 Nov;159(2):363–370. doi: 10.1042/bj1590363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WINZOR D. J., SCHERAGA H. A. STUDIES OF CHEMICALLY REACTING SYSTEMS ON SEPHADEX. I. CHROMATOGRAPHIC DEMONSTRATION OF THE GILBERT THEORY. Biochemistry. 1963 Nov-Dec;2:1263–1267. doi: 10.1021/bi00906a016. [DOI] [PubMed] [Google Scholar]
  19. Young J. L., Stansfield D. A. Solubilization of bovine corpus-luteum adenylate cyclase in lubrol-PX, triton X-100 or digitonin and the stabilizing effect of sodium fluoride present in the solubilization medium. Biochem J. 1978 Sep 1;173(3):919–924. doi: 10.1042/bj1730919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Young J. L., Stansfield D. A. Stabilization and solubilization of bovine corpus-luteum adenylate cyclase. The effects of guanosine triphosphate, guanosine 5'-[beta,gamma-imido]triphosphate, sodium fluoride and Tris/hydrochloric acid concentration on enzyme activity. Biochem J. 1978 Jan 1;169(1):133–142. doi: 10.1042/bj1690133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Young J. L., Stansfield D. A. Use of a competitive protein-binding assay for adenosine 3':5'-phosphate for the study of bovine corpus luteum adenylate cyclase. J Endocrinol. 1977 Apr;73(1):123–134. doi: 10.1677/joe.0.0730123. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES