Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Nov 1;175(2):649–658. doi: 10.1042/bj1750649

P-cresol and 3,5-xylenol methylhydroxylases in Pseudomonas putida N.C.I.B. 9896.

M J Keat, D J Hopper
PMCID: PMC1186115  PMID: 743215

Abstract

Pseudomonas putida N.C.I.B. 9869, when grown on 3,5-xylenol, hydroxylates the methyl groups on 3,5-xylenol and on p-cresol by two different enzymes. 3,5-Xylenol methylhydroxylase, studied only in relatively crude extracts, requires NADH, is not active with p-cresol and is inhibited by cyanide, but not by CO. The p-cresol methylhydroxylase requires an electron acceptor and will act under anaerobic conditions. It was purified and is a flavocytochrome c of mol.wt. approx. 114,000 consisting of two subunits of equal size. The enzyme catalyses the hydroxylation of p-cresol (Km 16 micron) and the further oxidation of product, p-hydroxybenzyl alcohol (Km 27 micron) to p-hydroxybenzaldehyde. A different p-cresol methylhydroxylase of the flavocytochrome c type is induced by growth on p-cresol. It too was purified and has mol.wt. approx. 100,000, and again consisted of two equal-size subunits. The Km for p=cresol 3.6 micron and for p=hydroxybenzyl alcohol, 15 micron.

Full text

PDF
649

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Byrne G. A. The separation of 2,4-dinitrophenylhydrazones by thin-layer chromatography. J Chromatogr. 1965 Dec;20(3):528–540. doi: 10.1016/s0021-9673(01)97455-2. [DOI] [PubMed] [Google Scholar]
  3. GHOLSON R. K., BAPTIST J. N., COON M. J. HYDROCARBON OXIDATION BY A BACTERIAL ENZYME SYSTEM. II. COFACTOR REQUIREMENTS FOR OCTANOL FORMATION FROM OCTANE. Biochemistry. 1963 Sep-Oct;2:1155–1159. doi: 10.1021/bi00905a043. [DOI] [PubMed] [Google Scholar]
  4. Hopper D. J., Chapman P. J. Gentisic acid and its 3- and 4-methyl-substituted homologoues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol. Biochem J. 1971 Mar;122(1):19–28. doi: 10.1042/bj1220019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hopper D. J., Taylor D. G. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida. J Bacteriol. 1975 Apr;122(1):1–6. doi: 10.1128/jb.122.1.1-6.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hopper D. J., Taylor D. G. The purification and properties of p-cresol-(acceptor) oxidoreductase (hydroxylating), a flavocytochrome from Pseudomonas putida. Biochem J. 1977 Oct 1;167(1):155–162. doi: 10.1042/bj1670155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hopper D. J. The hydroxylation of P-cresol and its conversion to P-hydroxybenzaldehyde in Pseudomonas putida. Biochem Biophys Res Commun. 1976 Mar 22;69(2):462–468. doi: 10.1016/0006-291x(76)90544-1. [DOI] [PubMed] [Google Scholar]
  8. Keat M. J., Hopper D. J. Aromatic-alcohol dehydrogenases from Pseudomonas putida N.C.I.B. 9869. Biochem Soc Trans. 1976;4(3):494–495. doi: 10.1042/bst0040494. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. McKenna E. J., Coon M. J. Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans. J Biol Chem. 1970 Aug 10;245(15):3882–3889. [PubMed] [Google Scholar]
  11. ROSENBERGER R. F., ELSDEN S. R. The yields of Streptococcus faecalis grown in continuous culture. J Gen Microbiol. 1960 Jun;22:726–739. doi: 10.1099/00221287-22-3-726. [DOI] [PubMed] [Google Scholar]
  12. Ruettinger R. T., Griffith G. R., Coon M. J. Characterization of the omega-hydroxylase of Pseudomonas oleovorans as a nonheme iron protein. Arch Biochem Biophys. 1977 Oct;183(2):528–537. doi: 10.1016/0003-9861(77)90388-5. [DOI] [PubMed] [Google Scholar]
  13. Toms A., Wood J. M. Early intermediates in the degradation of alpha-conidendrin by a Pseudomonas multivorans. Biochemistry. 1970 Feb 17;9(4):733–740. doi: 10.1021/bi00806a005. [DOI] [PubMed] [Google Scholar]
  14. Tonge G. M., Harrison D. E., Knowles C. J., Higgins I. J. Properties and partial purification of the methane-oxidising enzyme system from Methylosinus trichosporium. FEBS Lett. 1975 Oct 15;58(1):293–299. doi: 10.1016/0014-5793(75)80282-1. [DOI] [PubMed] [Google Scholar]
  15. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  16. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES