Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Dec 1;175(3):813–821. doi: 10.1042/bj1750813

Kinetics and regulation of the myofibrillar adenosine triphosphatase.

C C Goodno, C M Wall, S V Perry
PMCID: PMC1186142  PMID: 154323

Abstract

1. The steady-state kinetic behaviour of the ATPase (adenosine triphosphatase) of intact myofibrils was studied in the presence of both high and low concentrations of Ca2+ (0.25 mM and less than 10 nM respectively). 2. Kinetic data were collected over the initial linear phase of the assay, which lasts for 20--60s. To obtain consistent data we found it necessary to use either fresh myofibril preparations or preparations that had been stored in the presence of thiol compounds. 3. When assayed in the presence of 0.25 mM-Ca2+, the myofibrillar ATPase obeyed Michaelis-Menten kinetics over the range 0.03--5.0 mM-MgATP (Km 16 +/- 6 micrometer, V 0.4 +/- 0.1 mumol/min per mg). 4. At low Ca2+ concentrations (less than 10 nM) the myofibrillar ATPase displayed pronounced substrate inhibition, which was not observed at high Ca2+ concentrations. Thus increasing the MgATP concentration had the net effect of decreasing the ATPase activity at low Ca2+ relative to that at high Ca2+. This preferential effect of MgATP on the low-Ca2+ ATPase may be important in Ca2+ control. 5. The substrate inhibition that was observed at low Ca2+ was lost on storage or thiol modification of the myofibrils. 6. Under physiological conditions (2 mM-MgATP, I 0.15, pH 7.0), the ATPase of fresh and thiol-protected myofibrils displayed approx. 100-fold activation by Ca2+.

Full text

PDF
813

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENDALL J. R. A study of the kinetics of the fibrillar adenosine triphosphatase of rabbit skeletal muscle. Biochem J. 1961 Dec;81:520–535. doi: 10.1042/bj0810520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOWEN W. J., STEWART L. C., MARTIN H. L. STUDIES ON THE FAST INITIAL RATE OF ADENOSINE TRIPHOSPHATASE OF ACTOMYOSIN AND GLYCEROL-TREATED MUSCLE. J Biol Chem. 1963 Sep;238:2926–2931. [PubMed] [Google Scholar]
  3. Bagshaw C. R., Trentham D. R. The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction. Biochem J. 1974 Aug;141(2):331–349. doi: 10.1042/bj1410331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bendall J. R. The steady state kinetic constants of the Mg-activated myofibrillar ATPase. FEBS Lett. 1972 May 15;22(3):330–334. doi: 10.1016/0014-5793(72)80263-1. [DOI] [PubMed] [Google Scholar]
  5. Bremel R. D., Weber A. Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol. 1972 Jul 26;238(82):97–101. doi: 10.1038/newbio238097a0. [DOI] [PubMed] [Google Scholar]
  6. Chaplain R. A. The allosteric nature of substrate inhibition of insect actomyosin ATPase in presence of magnesium. Biochem Biophys Res Commun. 1966 Feb 3;22(3):248–253. doi: 10.1016/0006-291x(66)90473-6. [DOI] [PubMed] [Google Scholar]
  7. Daniel J. L., Hartshorne D. J. Comparison of the reaction of N-ethylmaleimide with myosin and heavy meromyosin subfragment 1. Biochem Biophys Res Commun. 1973 Mar 5;51(1):125–131. doi: 10.1016/0006-291x(73)90517-2. [DOI] [PubMed] [Google Scholar]
  8. Daniel J. L., Hartshorne D. J. Sulfhydryl groups of natural actomyosin essential for the Ca 2+ -sensitive response: location and properties. Biochim Biophys Acta. 1972 Oct 31;278(3):567–576. doi: 10.1016/0005-2795(72)90016-5. [DOI] [PubMed] [Google Scholar]
  9. EBASHI S. THIRD COMPONENT PARTICIPATING IN THE SUPERPRECIPITATION OF 'NATURAL ACTOMYOSIN'. Nature. 1963 Dec 7;200:1010–1010. doi: 10.1038/2001010a0. [DOI] [PubMed] [Google Scholar]
  10. Eisenberg E., Moos C. Actin activation of heavy meromyosin adenosine triphosphatase. Dependence on adenosine triphosphate and actin concentrations. J Biol Chem. 1970 May 10;245(9):2451–2456. [PubMed] [Google Scholar]
  11. Eisenberg E., Moos C. The adenosine triphosphatase activity of acto-heavy meromyosin. A kinetic analysis of actin activation. Biochemistry. 1968 Apr;7(4):1486–1489. doi: 10.1021/bi00844a035. [DOI] [PubMed] [Google Scholar]
  12. Eisenberg E., Moos C. The interaction of actin with myosin and heavy meromyosin in solution at low ionic strength. J Biol Chem. 1967 Jun 25;242(12):2945–2951. [PubMed] [Google Scholar]
  13. Eisenberg E., Zobel C. R., Moos C. Subfragment 1 of myosin: adenosine triphophatase activation by actin. Biochemistry. 1968 Sep;7(9):3186–3194. doi: 10.1021/bi00849a022. [DOI] [PubMed] [Google Scholar]
  14. GREY T. C., PERRY S. V. A study of the effects of substrate concentration and certain relaxing factors on the magnesium-activated myofibrillar adenosine triphosphatase. Biochem J. 1956 Sep;64(1):184–192. doi: 10.1042/bj0640184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hartshorne D. J., Daniel J. L. The importance of sulfhydryl groups for the calcium-sensitive response of natural actomyosin. Biochim Biophys Acta. 1970 Nov 3;223(1):214–217. doi: 10.1016/0005-2728(70)90150-7. [DOI] [PubMed] [Google Scholar]
  16. Highsmith S. Heavy meromyosin binds actin with negative cooperativity. Biochemistry. 1978 Jan 10;17(1):22–26. doi: 10.1021/bi00594a004. [DOI] [PubMed] [Google Scholar]
  17. Kraeling R. R., Rampacek G. B. Induction of a pale, soft, exudative-like myopathy and sudden death in pigs by injection of anterior pituitary extract. J Anim Sci. 1977 Jul;45(1):71–80. doi: 10.2527/jas1977.45171x. [DOI] [PubMed] [Google Scholar]
  18. LEVY H. M., RYAN E. M. EVIDENCE THAT CALCIUM ACTIVATES THE CONTRACTION OF ACTOMYOSIN BY OVERCOMING SUBSTRATE INHIBITION. Nature. 1965 Feb 13;205:703–705. doi: 10.1038/205703b0. [DOI] [PubMed] [Google Scholar]
  19. Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
  20. Nihei T., Filipenko C. A. The effects of substrate concentration on the Mg-adenosine triphosphatase activity of myosin. Can J Biochem. 1975 Dec;53(12):1282–1287. doi: 10.1139/o75-174. [DOI] [PubMed] [Google Scholar]
  21. Orentlicher M., Reuben J. P., Grundfest H., Brandt P. W. Calcium binding and tension development in detergent-treated muscle fibers. J Gen Physiol. 1974 Feb;63(2):168–186. doi: 10.1085/jgp.63.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Parker C. J., Jr, Kilbert L. H., Jr A study of the role of sulfhydryl groups in the interaction of troponin and myofibrils. Arch Biochem Biophys. 1970 Oct;140(2):326–333. doi: 10.1016/0003-9861(70)90073-1. [DOI] [PubMed] [Google Scholar]
  23. Portzehl H., Zaoralek P., Gaudin J. The activation by Ca2+ of the ATPase of extracted muscle fibrilsith variation of ionic strength, pH and concentration of MgATP. Biochim Biophys Acta. 1969;189(3):440–448. doi: 10.1016/0005-2728(69)90175-3. [DOI] [PubMed] [Google Scholar]
  24. Potter J. D. The content of troponin, tropomyosin, actin, and myosin in rabbit skeletal muscle myofibrils. Arch Biochem Biophys. 1974 Jun;162(2):436–441. doi: 10.1016/0003-9861(74)90202-1. [DOI] [PubMed] [Google Scholar]
  25. Schliselfeld L. H. Steady-state studies of the actin-activated adenosine triphosphatase activity of myosin. Biochim Biophys Acta. 1976 Aug 12;445(1):234–245. doi: 10.1016/0005-2744(76)90176-5. [DOI] [PubMed] [Google Scholar]
  26. WEBER A., HASSELBACH W. Die Erhöhung der Rate der ATP-Spaltung durch Myoxin- und Actomyosin-Gele bei Beginn der Spaltung. Biochim Biophys Acta. 1954 Oct;15(2):237–245. doi: 10.1016/0006-3002(54)90064-5. [DOI] [PubMed] [Google Scholar]
  27. Weber A. Parallel response of myofibrillar contraction and relaxation to four different nucleoside triphophates. J Gen Physiol. 1969 Jun;53(6):781–791. doi: 10.1085/jgp.53.6.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. White H. D., Taylor E. W. Energetics and mechanism of actomyosin adenosine triphosphatase. Biochemistry. 1976 Dec 28;15(26):5818–5826. doi: 10.1021/bi00671a020. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES