Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Nov 15;176(2):393–401. doi: 10.1042/bj1760393

Turnover of muscle protein in the fowl (Gallus domesticus). Rates of protein synthesis in fast and slow skeletal, cardiac and smooth muscle of the adult fowl.

G J Laurent, M P Sparrow, P C Bates, D J Millward
PMCID: PMC1186246  PMID: 743247

Abstract

Rates of protein synthesis in skeletal, cardiac and smooth muscle of fully grown fowl (Gallus domesticus) were determined in vivo by means of the constant infusion method using [14C]proline. In the anterior latissimus dorsi muscle, containing predominantly slow fibres, the average synthesis rate of non-collagen muscle proteins was 17.0 +/- 3.1% per day, a value higher than that obtained for cardiac muscle (13.8 +/- 1.3% per day) and for smooth muscle of the gizzard (12.0 +/- 1.9% per day). In the posterior latissimus dorsi muscle, containing predominantly fast fibres, synthesis rates were much lower (6.9 +/- 1.8% per day). In each case these average rates for the non-collagen protein were similar to the average rate for the sarcoplasmic and myofibrillar protein fractions. The RNA concentration of these four muscles showed that relative rates of protein synthesis were determined mainly by the relative RNA concentrations. The rate of protein synthesis per unit of DNA (the DNA activity) was similar in the two skeletal muscles, but somewhat lower in cardiac muscle and gizzard, possibly reflecting the larger proportion of less active cell types in these two muscles. These quantitative aspects of protein turnover in the two skeletal muscles are discussed in terms of the determination of ultimate size of the DNA unit, and in relation to muscle ultrastructure.

Full text

PDF
393

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asmussen G., Kiessling A., Wohlrab F. Histochemische differenzierbare Sorten von Muskelfasern im M. latissimus dorsi des Huhnes. Experientia. 1969 Sep 15;25(9):959–961. doi: 10.1007/BF01898089. [DOI] [PubMed] [Google Scholar]
  2. Bornstein P. The biosynthesis of collagen. Annu Rev Biochem. 1974;43(0):567–603. doi: 10.1146/annurev.bi.43.070174.003031. [DOI] [PubMed] [Google Scholar]
  3. Citoler P., Benítez L., Maurer W. Autoradiographische Untersuchung der Protein-Syntheserate in roten und weissen Muskelfasern. Exp Cell Res. 1967 Jan;45(1):195–205. doi: 10.1016/0014-4827(67)90123-1. [DOI] [PubMed] [Google Scholar]
  4. ENESCO M., PUDDY D. INCREASE IN THE NUMBER OF NUCLEI AND WEIGHT IN SKELETAL MUSCLE OF RATS OF VARIOUS AGES. Am J Anat. 1964 Mar;114:235–244. doi: 10.1002/aja.1001140204. [DOI] [PubMed] [Google Scholar]
  5. Everett A. W., Taylor R. R., Sparrow M. P. Protein synthesis during right-ventricular hypertrophy after pulmonary-artery stenosis in the dog. Biochem J. 1977 Sep 15;166(3):315–321. doi: 10.1042/bj1660315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fern E. B., Garlick P. J. The specific radioactivity of the precursor pool for estimates of the rate of protein synthesis. Biochem J. 1973 Aug;134(4):1127–1130. doi: 10.1042/bj1341127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fern E. B., Garlick P. J. The specific radioactivity of the tissue free amino acid pool as a basis for measuring the rate of protein synthesis in the rat in vivo. Biochem J. 1974 Aug;142(2):413–419. doi: 10.1042/bj1420413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fricke U. Tritosol: a new scintillation cocktail based on Triton X-100. Anal Biochem. 1975 Feb;63(2):555–558. doi: 10.1016/0003-2697(75)90379-6. [DOI] [PubMed] [Google Scholar]
  9. Garlick P. J., Burk T. L., Swick R. W. Protein synthesis and RNA in tissues of the pig. Am J Physiol. 1976 Apr;230(4):1108–1112. doi: 10.1152/ajplegacy.1976.230.4.1108. [DOI] [PubMed] [Google Scholar]
  10. Garlick P. J., Millward D. J., James W. P. The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats. Biochem J. 1973 Dec;136(4):935–945. doi: 10.1042/bj1360935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garlick P. J., Millward D. J., James W. P., Waterlow J. C. The effect of protein deprivation and starvation on the rate of protein synthesis in tissues of the rat. Biochim Biophys Acta. 1975 Nov 18;414(1):71–84. doi: 10.1016/0005-2787(75)90126-4. [DOI] [PubMed] [Google Scholar]
  12. Goldberg A. L. Protein synthesis in tonic and phasic skeletal muscles. Nature. 1967 Dec 23;216(5121):1219–1220. doi: 10.1038/2161219a0. [DOI] [PubMed] [Google Scholar]
  13. Grove D., Zak R., Nair K. G., Aschenbrenner V. Biochemical correlates of cardiac hypertrophy. IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat. Circ Res. 1969 Oct;25(4):473–485. doi: 10.1161/01.res.25.4.473. [DOI] [PubMed] [Google Scholar]
  14. Gutmann E., Melichna J., Syrový I. Developmental changes in contraction time, myosin properties and fibre pattern of fast and slow skeletal muscles. Physiol Bohemoslov. 1974;23(1):19–27. [PubMed] [Google Scholar]
  15. HESS A. Structural differences of fast and slow extrafusal muscle fibres and their nerve endings in chickens. J Physiol. 1961 Jul;157:221–231. doi: 10.1113/jphysiol.1961.sp006717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hod Y., Hershko A. Relationship of the pool of intracellular valine to protein synthesis and degradation in cultured cells. J Biol Chem. 1976 Jul 25;251(14):4458–4457. [PubMed] [Google Scholar]
  17. James W. P., Garlick P. J., Sender P. M., Waterlow J. C. Studies of amino acid and protein metabolism in normal man with L-[U-14C]tyrosine. Clin Sci Mol Med. 1976 Jun;50(6):525–532. doi: 10.1042/cs0500525. [DOI] [PubMed] [Google Scholar]
  18. Kedenburg C. P. A lithium buffer system for accelerated single-column amino acid analysis in physiological fluids. Anal Biochem. 1971 Mar;40(1):35–42. doi: 10.1016/0003-2697(71)90081-9. [DOI] [PubMed] [Google Scholar]
  19. Khairallah E. A., Mortimore G. E. Assessment of protein turnover in perfused rat liver. Evidence for amino acid compartmentation from differential labeling of free and tRNA-gound valine. J Biol Chem. 1976 Mar 10;251(5):1375–1384. [PubMed] [Google Scholar]
  20. Kimata S., Morkin E. Comparison of myosin synthesis in heart and red and white skeletal muscles. Am J Physiol. 1971 Dec;221(6):1706–1713. doi: 10.1152/ajplegacy.1971.221.6.1706. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Laurent G. J., Sparrow M. P., Bates P. C., Millward D. J. Turnover of muscle protein in the fowl. Collagen content and turnover in cardiac and skeletal muscles of the adult fowl and the changes during stretch-induced growth. Biochem J. 1978 Nov 15;176(2):419–427. doi: 10.1042/bj1760419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Laurent G. J., Sparrow M. P., Millward D. J. Turnover of muscle protein in the fowl. Changes in rates of protein synthesis and breakdown during hypertrophy of the anterior and posterior latissimus dorsi muscles. Biochem J. 1978 Nov 15;176(2):407–417. doi: 10.1042/bj1760407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MASTER R. W. POSSIBLE SYNTHESIS OF POLYRIBONUCLEOTIDES OF KNOWN BASE-TRIPLET SEQUENCES. Nature. 1965 Apr 3;206:93–93. doi: 10.1038/206093b0. [DOI] [PubMed] [Google Scholar]
  25. McClain P. E., Creed G. J., Wiley E. R., Gerrits R. J. Cross-linking characteristics of collagen from porcine intramuscular connective tissue: variation between muscles. Biochim Biophys Acta. 1970 Nov 17;221(2):349–356. doi: 10.1016/0005-2795(70)90275-8. [DOI] [PubMed] [Google Scholar]
  26. Millward D. J., Garlick P. J., James W. P., Nnanyelugo D. O., Ryatt J. S. Relationship between protein synthesis and RNA content in skeletal muscle. Nature. 1973 Jan 19;241(5386):204–205. doi: 10.1038/241204a0. [DOI] [PubMed] [Google Scholar]
  27. Millward D. J., Garlick P. J., Nnanyelugo D. O., Waterlow J. C. The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass. Biochem J. 1976 Apr 15;156(1):185–188. doi: 10.1042/bj1560185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Millward D. J., Garlick P. J., Stewart R. J., Nnanyelugo D. O., Waterlow J. C. Skeletal-muscle growth and protein turnover. Biochem J. 1975 Aug;150(2):235–243. doi: 10.1042/bj1500235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Millward D. J., Garlick P. J. The pattern of protein turnover in the whole animal and the effect of dietary variations. Proc Nutr Soc. 1972 Dec;31(3):257–263. doi: 10.1079/pns19720049. [DOI] [PubMed] [Google Scholar]
  30. Millward D. J. Protein turnover in skeletal muscle. I. The measurement of rates of synthesis and catabolism of skeletal muscle protein using (14C)Na2CO3 to label protein. Clin Sci. 1970 Nov;39(5):577–590. doi: 10.1042/cs0390577. [DOI] [PubMed] [Google Scholar]
  31. Millward D. J. The regulation of muscle-protein turnover in growth and development. Biochem Soc Trans. 1978;6(3):494–499. doi: 10.1042/bst0060494. [DOI] [PubMed] [Google Scholar]
  32. NEUMAN R. E., LOGAN M. A. The determination of hydroxyproline. J Biol Chem. 1950 May;184(1):299–306. [PubMed] [Google Scholar]
  33. Nicholas G. A., Lobley G. E., Harris C. I. Use of the constant infusion technique for measuring rates of protein synthesis in the New Zealand White rabbit. Br J Nutr. 1977 Jul;38(1):1–17. doi: 10.1079/bjn19770056. [DOI] [PubMed] [Google Scholar]
  34. Page S. G. Structure and some contractile properties of fast and slow muscles of the chicken. J Physiol. 1969 Nov;205(1):131–145. doi: 10.1113/jphysiol.1969.sp008956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. SYROVY I., HAJEK I., GUTMANN E. DEGRADATION OF PROTEINS OF M. Physiol Bohemoslov. 1965;14:17–22. [PubMed] [Google Scholar]
  36. Shear C. R., Goldspink G. Structural and physiological changes associated with the growth of avian fast and slow muscle. J Morphol. 1971 Nov;135(3):351–372. doi: 10.1002/jmor.1051350308. [DOI] [PubMed] [Google Scholar]
  37. Soltész G., Joyce J., Young M. Protein synthesis rate in the newborn lamb. Biol Neonate. 1973;23(1):139–148. doi: 10.1159/000240595. [DOI] [PubMed] [Google Scholar]
  38. Waterlow J. C., Stephen J. M. The effect of low protein diets on the turn-over rates of serums, liver and muscle proteins in the rat, measured by continuous infusion of L-[14C]lysine. Clin Sci. 1968 Oct;35(2):287–305. [PubMed] [Google Scholar]
  39. Waterlow J. C., Stephen J. M. The measurement of total lysine turnover in the rat by intravenous infusion of L-[U-14C]lysine. Clin Sci. 1967 Dec;33(3):489–506. [PubMed] [Google Scholar]
  40. Wool I. G., Stirewalt W. S., Kurihara K., Low R. B., Bailey P., Oyer D. Mode of action of insulin in the regulation of protein biosynthesis in muscle. Recent Prog Horm Res. 1968;24:139–213. doi: 10.1016/b978-1-4831-9827-9.50010-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES