Abstract
1. Neither alloxan-diabetes nor starvation affected the rate of glucose production in hepatocytes incubated with lactate, pyruvate, propionate or fructose as substrates. In contrast, glucose synthesis with either alanine or glutamine was increased nearly 3- and 12-fold respectively, in comparison with that in fed rabbits. 2. The addition of amino-oxyacetate resulted in about a 50% decrease in glucose formation from lactate in hepatocytes isolated from fed, alloxan-diabetic and starved rats, suggesting that both mitochondrial and cytosolic forms of rabbit phosphoenolpyruvate carboxykinase function actively during gluconeogenesis. 3. Alloxan-diabetes resulted in about 2-3-fold stimulation of urea production from either amino acid studied or NH4Cl as NH3 donor, whereas starvation caused a significant increase in the rate of ureogenesis only in the presence of alanine as the source of NH3. 4. As concluded from changes in the [3-hydroxybutyrate]/[acetoacetate] ratio, in hepatocytes from diabetic animals the mitochondrial redox state was shifted toward oxidation in comparison with that observed in liver cells isolated from fed rabbits.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvares F. L., Ray P. D. Lack of inhibition by L-tryptophan or quinolinate of gluconeogenesis in diabetic rats. J Biol Chem. 1974 Apr 10;249(7):2058–2062. [PubMed] [Google Scholar]
- Arinze I. J., Garber A. J., Hanson R. W. The regulation of gluconeogenesis in mammalian liver. The role of mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1973 Apr 10;248(7):2266–2274. [PubMed] [Google Scholar]
- Belfiore F., Romeo F., Napoli E., Lo Vecchio L. Enzymes of glucose metabolism in liver of subjects with adult-onset diabetes. Diabetes. 1974 Apr;23(4):293–301. doi: 10.2337/diab.23.4.293. [DOI] [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
- Cook D. E. Gluconeogenesis in the guinea pig. Effect of glucagon on gluconeogenesis from lactate by isolated perfused guinea-pig liver. Eur J Biochem. 1977 Jun 15;76(2):567–571. doi: 10.1111/j.1432-1033.1977.tb11626.x. [DOI] [PubMed] [Google Scholar]
- Cornell N. W., Lund P., Krebs H. A. The effect of lysine on gluconeogenesis from lactate in rat hepatocytes. Biochem J. 1974 Aug;142(2):327–337. doi: 10.1042/bj1420327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott K. R., Pogson C. I. Preparation and characterization of isolated parenchymal cells from guinea pig liver. Mol Cell Biochem. 1977 May 31;16(1):23–29. doi: 10.1007/BF01769835. [DOI] [PubMed] [Google Scholar]
- Elliott K. R., Pogson C. I., Smith S. A. Permeability of the liver cell membrane to quinolinate. Biochem J. 1977 Apr 15;164(1):283–286. doi: 10.1042/bj1640283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott K. R., Pogson C. I. The effects of starvation and experimental diabetes on phosphoenol-pyruvate carboxykinase in the guinea pig. Biochem J. 1977 May 15;164(2):357–361. doi: 10.1042/bj1640357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Exton J. H., Corbin J. G., Harper S. C. Control of gluconeogenesis in liver. V. Effects of fasting, diabetes, and glucagon on lactate and endogenous metabolism in the perfused rat liver. J Biol Chem. 1972 Aug 25;247(16):4996–5003. [PubMed] [Google Scholar]
- Exton J. H., Park C. R. Control of gluconeogenesis in liver. I. General features of gluconeogenesis in the perfused livers of rats. J Biol Chem. 1967 Jun 10;242(11):2622–2636. [PubMed] [Google Scholar]
- Filsell O. H., Jarrett I. G., Taylor P. H., Keech D. B. Effects of fasting, diabetes and glucocorticoids on gluconeogenic enzymes in the sheep. Biochim Biophys Acta. 1969 Jun 17;184(1):54–63. doi: 10.1016/0304-4165(69)90098-1. [DOI] [PubMed] [Google Scholar]
- Garber A. J., Hanson R. W. The interrelationships of the various pathways forming gluconeogenic precursors in guinea pig liver mitochondria. J Biol Chem. 1971 Feb 10;246(3):589–598. [PubMed] [Google Scholar]
- HOPPER S., SEGAL H. L. COMPARATIVE PROPERTIES OF GLUTAMIC-ALANINE TRANSAMINASE FROM SEVERAL SOURCES. Arch Biochem Biophys. 1964 Jun;105:501–505. doi: 10.1016/0003-9861(64)90042-6. [DOI] [PubMed] [Google Scholar]
- Hsu S. L., Fahien L. A. Effect of quinolinate on aminotransferases. Arch Biochem Biophys. 1976 Nov;177(1):217–225. doi: 10.1016/0003-9861(76)90431-8. [DOI] [PubMed] [Google Scholar]
- Huibregtse C. A., Brunsvold R. A., Ray P. D. Dietary and hormonal regulation of some enzyme activities associated with gluconeogenesis in rabbit liver. Biochim Biophys Acta. 1976 Feb 24;421(2):228–236. doi: 10.1016/0304-4165(76)90289-0. [DOI] [PubMed] [Google Scholar]
- Huibregtse C. A., Rufo G. A., Jr, Ray P. D. Gluconeogenesis in rabbit liver. II. Gluconeogenesis and its enhancement by glucagon, epinephrine and cyclic AMP. Biochim Biophys Acta. 1977 Aug 25;499(1):99–110. doi: 10.1016/0304-4165(77)90232-x. [DOI] [PubMed] [Google Scholar]
- Johnson D. C., Brunsvold R. A., Ebert K. A., Ray P. D. Gluconeogenesis in rabbit liver. I. Pyruvate-derived dicarboxylic acids and phosphoenolpyruvate formation in rabbit liver. J Biol Chem. 1973 Feb 10;248(3):763–770. [PubMed] [Google Scholar]
- Kim J. H., Miller L. L. The functional significance of changes in activity of the enzymes, tryptophan pyrrolase and tyrosine transaminase, after induction in intact rats and in the isolated, perfused rat liver. J Biol Chem. 1969 Mar 25;244(6):1410–1416. [PubMed] [Google Scholar]
- MCLEAN P., NOVELLO F. INFLUENCE OF PANCREATIC HORMONES ON ENZYMES CONCERNED WITH UREA SYNTHESIS IN RAT LIVER. Biochem J. 1965 Feb;94:410–422. doi: 10.1042/bj0940410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NORDLIE R. C., LARDY H. A. Mammalian liver phosphoneolpyruvate carboxykinase activities. J Biol Chem. 1963 Jul;238:2259–2263. [PubMed] [Google Scholar]
- Ray P. D., Foster D. O., Lardy H. A. Paths of carbon in gluconeogenesis and lipogenesis. IV. Inhibition by L-tryptophan of hepatic gluconeogenesis at the level of phosphoenolpyruvate formation. J Biol Chem. 1966 Sep 10;241(17):3904–3908. [PubMed] [Google Scholar]
- Ross B. D., Hems R., Krebs H. A. The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J. 1967 Mar;102(3):942–951. doi: 10.1042/bj1020942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res. 1973 Dec;82(2):391–398. doi: 10.1016/0014-4827(73)90357-1. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of rat liver cells. I. Effect of Ca 2+ on enzymatic dispersion of isolated, perfused liver. Exp Cell Res. 1972 Oct;74(2):450–454. doi: 10.1016/0014-4827(72)90400-4. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of rat liver cells. II. Effects of ions and chelators on tissue dispersion. Exp Cell Res. 1973 Jan;76(1):25–30. doi: 10.1016/0014-4827(73)90414-x. [DOI] [PubMed] [Google Scholar]
- Story D. L., O'donnel J. A., Dong F. M., Freedland R. A. Gluconeogenesis in isolated hepatocytes from fed and forty-eight-hour starved rats. Biochem Biophys Res Commun. 1976 Dec 6;73(3):799–806. doi: 10.1016/0006-291x(76)90880-9. [DOI] [PubMed] [Google Scholar]
- Söling H. D., Willms B., Kleineke J., Gehlhoff M. Regulation of gluconeogenesis in the guinea pig liver. Eur J Biochem. 1970 Oct;16(2):289–302. doi: 10.1111/j.1432-1033.1970.tb01084.x. [DOI] [PubMed] [Google Scholar]
- Taylor P. H., Wallace J. C., Keech D. B. Gluconeogenic enzymes in sheep liver. Intracellular localization of pyruvate carboxylase and phosphoenolpyruvate carboxykinase in normal, fasted and diabetic sheep. Biochim Biophys Acta. 1971 May 18;237(2):179–191. [PubMed] [Google Scholar]
- Usatenko M. S. Hormonal regulation of phosphoenolpyruvate carboxykinase activity in liver and kidney of adult animals and formation of this enzyme in developing rabbit liver. Biochem Med. 1970 Feb;3(4):298–310. doi: 10.1016/0006-2944(70)90030-x. [DOI] [PubMed] [Google Scholar]
- Veneziale C. M., Walter P., Kneer N., Lardy H. A. Influence of L-tryptophan and its metabolites on gluconeogenesis in the isolated, perfused liver. Biochemistry. 1967 Jul;6(7):2129–2138. doi: 10.1021/bi00859a034. [DOI] [PubMed] [Google Scholar]
- Wieland O., Evertz-Prüsse E., Stukowski B. Distribution of pyruvate carboxylase and phosphoenol-pyruvate carboxikinase in human liver. FEBS Lett. 1968 Nov;2(1):26–28. doi: 10.1016/0014-5793(68)80091-2. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaleski J., Bryla J. Effects of oleate, palmitate, and octanoate on gluconeogenesis in isolated rabbit liver cells. Arch Biochem Biophys. 1977 Oct;183(2):553–562. doi: 10.1016/0003-9861(77)90390-3. [DOI] [PubMed] [Google Scholar]