Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Nov 15;176(2):631–633. doi: 10.1042/bj1760631

Control of phosphatidylcholine synthesis and the regulatory role of choline kinase in rat liver. Evidence from essential-fatty acid-deficient rats.

J P Infante, J E Kinsella
PMCID: PMC1186279  PMID: 217369

Abstract

Choline kinase and phosphocholine cytidylytransferase catalyse the rate-limiting steps of the cytidine pathway for the synthesis of phosphatidylcholine [Infante (1977) Biochem. J. 167, 847--849]. Essential-fatty acid deficiency induces a 3.5-fold increase in the specific activity of choline kinase, whereas the specific activity of the cytidylytransferase remains unchanged in rat liver. This change in specific activity accounts for the calculated increase in flux through the cytidine pathway produced in vivo by the same dietary state [Trewhella & Collins (1973 Biochim. Biophys. Acta 296, 34--50], thus confirming the fact that choline kinase has a regulatory role in the cytidine pathway for the synthesis of phosphatidylcholine.

Full text

PDF
631

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akesson B., Elovson J., Arvidson G. Initial incorporation into rat liver glycerolipids of intraportally injected (9,10-3H2)palmitic acid. Biochim Biophys Acta. 1970 Oct 6;218(1):44–56. doi: 10.1016/0005-2760(70)90091-3. [DOI] [PubMed] [Google Scholar]
  2. Akesson B. Initial esterification and conversion of intraportally injected (I-14C)linoleic acid in rat liver. Biochim Biophys Acta. 1970 Oct 6;218(1):57–70. [PubMed] [Google Scholar]
  3. Choy P. C., Schneider W. J., Vance D. E. Immunological studies on CTP:phosphocholine cytidylyltransferase from the livers of normal and choline-deficient rats. Eur J Biochem. 1978 Apr;85(1):189–193. doi: 10.1111/j.1432-1033.1978.tb12227.x. [DOI] [PubMed] [Google Scholar]
  4. HOLMAN R. T. The ratio of trienoic: tetraenoic acids in tissue lipids as a measure of essential fatty acid requirement. J Nutr. 1960 Mar;70:405–410. doi: 10.1093/jn/70.3.405. [DOI] [PubMed] [Google Scholar]
  5. Infante J. P., Kinsella J. E. Inhibition of phosphatidylcholine synthesis in mammary tissue by 2-chloroethyltrimethylammonium chloride. Biochem J. 1973 Jul;134(3):825–827. doi: 10.1042/bj1340825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Infante J. P., Kinsella J. E. Phospholipid synthesis in mammary tissue. Choline and ethanolamine kinases: kinetic evidence for two discrete active sites. Lipids. 1976 Oct;11(10):727–735. doi: 10.1007/BF02533046. [DOI] [PubMed] [Google Scholar]
  7. Infante J. P. Rate-limiting steps in the cytidine pathway for the synthesis of phosphatidylcholine and phosphatidylethanolamine. Biochem J. 1977 Dec 1;167(3):847–849. doi: 10.1042/bj1670847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Newsholme E. A., Crabtree B. Metabolic aspects of enzyme activity regulation. Symp Soc Exp Biol. 1973;27:429–460. [PubMed] [Google Scholar]
  10. Newsholme E. A., Gevers W. Control of glycolysis and gluconeogenesis in liver and kidney cortex. Vitam Horm. 1967;25:1–87. doi: 10.1016/s0083-6729(08)60033-3. [DOI] [PubMed] [Google Scholar]
  11. Privett O. S., Phillips F., Shimasaki H., Nozawa T., Nickell E. C. Studies of effects of trans fatty acids in the diet on lipid metabolism in essential fatty acid deficient rats. Am J Clin Nutr. 1977 Jul;30(7):1009–1017. doi: 10.1093/ajcn/30.7.1009. [DOI] [PubMed] [Google Scholar]
  12. Rytter D., Miller J. E., Cornatzer W. E. Specificity for incorporation of choline and ethanolamine into rat-liver microsomal lecithins. Biochim Biophys Acta. 1968 Mar 4;152(2):418–421. doi: 10.1016/0005-2760(68)90054-4. [DOI] [PubMed] [Google Scholar]
  13. Schimke R. T. Control of enzyme levels in mammalian tissues. Adv Enzymol Relat Areas Mol Biol. 1973;37:135–187. doi: 10.1002/9780470122822.ch3. [DOI] [PubMed] [Google Scholar]
  14. Trewhella M. A., Collins F. D. A comparison of the relative turnover of individual molecular species of phospholipids in normal rats and in rats deficient in essential fatty acids. Biochim Biophys Acta. 1973 Jan 19;296(1):34–50. doi: 10.1016/0005-2760(73)90041-6. [DOI] [PubMed] [Google Scholar]
  15. Trewhella M. A., Collins F. D. Pathways of phosphatidylcholine biosynthesis in rat liver. Biochim Biophys Acta. 1973 Jan 19;296(1):51–61. doi: 10.1016/0005-2760(73)90042-8. [DOI] [PubMed] [Google Scholar]
  16. van Golde L. M., Scherphof G. L., van Deenen L. L. Biosynthetic pathways in the formation of individual molecular species of rat liver phospholipids. Biochim Biophys Acta. 1969 Apr 29;176(3):635–637. doi: 10.1016/0005-2760(69)90231-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES