Abstract
Studies are presented on the influence of polyamines on prostatic chromatin- and non-histone-protein-associated protein kinase reactions involving both exogenous and endogenous substrates. The activities toward the model acidic protein substrate, dephosphophosvitin, were maximal at 160--200mM-NaCl (or -KCl or -NH4Cl). Under these conditions, spermidine and spermine added in concentrations up to 2mM were essentially without effect. However, without addition of NaCl to the medium, marked stimulation of these reactions was elicited by these polyamines at 1--2mM concentrations. The stimulatory effects were not due to non-specific changes in the ionic strength or to substitution of spermine for Mg2+, as maximal stimulation by 1 mM-spermine was observed only at optimal (2--4mM) Mg2+ concentrations. Qualitatively similar effects of polyamines were observed with enzyme preparations from the prostates of castrated rats, and with chromatin and non-histone-protein preparations from other tissues besides ventral prostate. When phosphorylation of endogenous non-histone proteins of the chromatin was measured, spermine stimulated both the initial rates and the final extent of transphosphorylation, even in the presence of optimal concentration of NaCl. By contrast, spermine or spermidine had no effect on the chromatin- and non-histone-protein-associated protein kinase reactions determined with lysine-rich histones as substrates. Chemically NN-dimethylated dephosphophosvitin was a less active substrate for the chromatin-associated protein kinase, but its phosphorylation was more markedly stimulated by spermine in comparison with unmodified dephosphophosvitin. These observations hint that the polyamine stimulations of the various protein kinase reactions may be due to effects on the conformations of the non-histone protein substrates rather than on the kinases themselves.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed K., Ishida H. Effect of testosterone on nuclear phosphoproteins of rat ventral prostate. Mol Pharmacol. 1971 May;7(3):323–327. [PubMed] [Google Scholar]
- Ahmed K., Wilson M. J. Chromatin-associated protein phosphokinases of rat ventral prostate. Characteristics and effects of androgenic status. J Biol Chem. 1975 Mar 25;250(6):2370–2375. [PubMed] [Google Scholar]
- Ahmed K., Wilson M. J., Davis A. T. Phosvitin phosphate content. Implications for protein kinase assay. Biochim Biophys Acta. 1975 Jan 23;377(1):80–83. doi: 10.1016/0005-2744(75)90288-0. [DOI] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baserga R. Non-histone chromosomal proteins in normal and abnormal growth. Life Sci. 1974 Sep 15;15(6):1057–1071. doi: 10.1016/s0024-3205(74)80003-2. [DOI] [PubMed] [Google Scholar]
- Fuchs E. The interdependence of magnesium with spermidine and phosphoenolpyruvate in an enzyme-synthesizing system in vitro. Eur J Biochem. 1976 Mar 16;63(1):15–22. doi: 10.1111/j.1432-1033.1976.tb10201.x. [DOI] [PubMed] [Google Scholar]
- Fukuyama H., Yamashita S. Activation of rat liver choline kinase by polyamines. FEBS Lett. 1976 Nov 15;72(1):33–36. doi: 10.1016/0014-5793(76)80892-7. [DOI] [PubMed] [Google Scholar]
- Fuller D. J., Byus C. V., Russell D. H. Specific regulation by steroid hormones of the amount of type I cyclic AMP-dependent protein kinase holoenzyme. Proc Natl Acad Sci U S A. 1978 Jan;75(1):223–227. doi: 10.1073/pnas.75.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habeeb A. F. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966 Mar;14(3):328–336. doi: 10.1016/0003-2697(66)90275-2. [DOI] [PubMed] [Google Scholar]
- Hirschman S., Leng M., Felsenfield G. Interaction of spermine and DNA. Biopolymers. 1967 Feb;5(2):227–233. doi: 10.1002/bip.1967.360050209. [DOI] [PubMed] [Google Scholar]
- Imai H., Shimoyama M., Yamamoto S., Tanigawa Y., Ueda I. Effect of polyamines on phosphorylation of non-histone chromatin proteins from hog liver. Biochem Biophys Res Commun. 1975 Sep 16;66(2):856–862. doi: 10.1016/0006-291x(75)90588-4. [DOI] [PubMed] [Google Scholar]
- Ishida H., Ahmed K. Studies on chromatin-associated protein phosphokinase of submandibular gland from isoproterenol-treated rats. Exp Cell Res. 1974 Mar 15;84(1):127–136. doi: 10.1016/0014-4827(74)90388-7. [DOI] [PubMed] [Google Scholar]
- Ishida H., Ahmed K. Studies on phosphoproteins of submandibular gland nuclei isolated from isoproterenol-treated rats. Exp Cell Res. 1973 Mar 30;78(1):31–40. doi: 10.1016/0014-4827(73)90034-7. [DOI] [PubMed] [Google Scholar]
- Kaplowitz P. B., Platz R. D., Kleinsmith L. J. Nuclear phosphoproteins. 3. Increase in phosphory- lation during histone-phosphoprotein interaction. Biochim Biophys Acta. 1971 Mar 23;229(3):739–748. [PubMed] [Google Scholar]
- Keller R. K., Socher S. H., Krall J. F., Chandra T., O'Malley B. W. Fractionation of chick oviduct chromatin: IV. Association of protein kinase with transcriptionally active chromatin. Biochem Biophys Res Commun. 1975 Sep 16;66(2):453–459. doi: 10.1016/0006-291x(75)90532-x. [DOI] [PubMed] [Google Scholar]
- Kish V. M., Kleinsmith L. J. Nuclear protein kinases. Evidence for their heterogeneity, tissue specificity, substrate specificities, and differential responses to cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1974 Feb 10;249(3):750–760. [PubMed] [Google Scholar]
- Klyzsejko-Stefanowicz L., Chiu J. F., Tsai Y. H., Hnilica L. S. Acceptor proteins in rat androgenic tissue chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1954–1958. doi: 10.1073/pnas.73.6.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuroda Y., Hashimoto E., Nishizuka Y. Stimulatory effect of histones on phosphorylation of nuclear phosphoproteins. J Biochem. 1977 Oct;82(4):1167–1172. doi: 10.1093/oxfordjournals.jbchem.a131790. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lin Y., Means G. E., Feeney R. E. The action of proteolytic enzymes on N,N-dimethyl proteins. Basis for a microassay for proteolytic enzymes. J Biol Chem. 1969 Feb 10;244(3):789–793. [PubMed] [Google Scholar]
- Macgillivray A. J., Paul J., Threlfall G. Transcriptional regulation in eukaryotic cells. Adv Cancer Res. 1972;15:93–162. doi: 10.1016/s0065-230x(08)60373-5. [DOI] [PubMed] [Google Scholar]
- Mainwaring W. I., Peterken B. M. A reconstituted cell-free system for the specific transfer of steroid--receptor complexes into nuclear chromatin isolated from the rat ventral prostate gland. Biochem J. 1971 Nov;125(1):285–295. doi: 10.1042/bj1250285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mainwaring W. I., Symes E. K., Higgins S. J. Nuclear components responsible for the retention of steroid--receptor complexes, especially from the standpoint of the specifcity of hormonal responses. Biochem J. 1976 Apr 15;156(1):129–141. doi: 10.1042/bj1560129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray A. W., Froscio M., Rogers A. Effect of polyamines on cyclic AMP-dependent and independent protein kinases from mouse epidermis. Biochem Biophys Res Commun. 1976 Aug 23;71(4):1175–1181. doi: 10.1016/0006-291x(76)90777-4. [DOI] [PubMed] [Google Scholar]
- Mäenpä P. H. Effects of polyamines and polyanions on a cyclic nucleotide-independent and a cyclic AMP-dependent protein kinase. Biochim Biophys Acta. 1977 Jul 21;498(1):294–305. doi: 10.1016/0304-4165(77)90267-7. [DOI] [PubMed] [Google Scholar]
- Nakai C., Glinsmann W. Effects of polyamines on nucleosidediphosphate kinase activity. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1419–1425. doi: 10.1016/0006-291x(77)90600-3. [DOI] [PubMed] [Google Scholar]
- Nyberg L. M., Wang T. Y. The role of the androgen-binding nonhistone proteins in the transcription of prostatic chromatin. J Steroid Biochem. 1976 Apr;7(4):267–273. doi: 10.1016/0022-4731(76)90126-6. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Lockwood D. H., Williams-Ashman H. G. Concentrations of putrescine and polyamines and their enzymic synthesis during androgen-induced prostatic growth. Biochem J. 1970 Mar;117(1):17–31. doi: 10.1042/bj1170017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raina A., Jänne J. Physiology of the natural polyamines putrescine, spermidine and spermine. Med Biol. 1975 Jun;53(3):121–147. [PubMed] [Google Scholar]
- Reddi A. H., Ewing L. L., Williams-Ashman H. G. Protein phospholinase reactions in mammalian testis. Stimulatory effects of adenosine 3':5'-cyclic monophosphate on the phosphorylation of basic proteins. Biochem J. 1971 Apr;122(3):333–345. doi: 10.1042/bj1220333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruddon R. W., Anderson S. L. Presence of multiple protein kinase activities in rat liver nuclei. Biochem Biophys Res Commun. 1972 Feb 25;46(4):1499–1508. doi: 10.1016/0006-291x(72)90777-2. [DOI] [PubMed] [Google Scholar]
- Stellwagen R. H., Cole R. D. Chromosomal proteins. Annu Rev Biochem. 1969;38:951–990. doi: 10.1146/annurev.bi.38.070169.004511. [DOI] [PubMed] [Google Scholar]
- Stevens L. The biochemical role of naturally occurring polyamines in nucleic acid synthesis. Biol Rev Camb Philos Soc. 1970 Feb;45(1):1–27. doi: 10.1111/j.1469-185x.1970.tb01073.x. [DOI] [PubMed] [Google Scholar]
- Tabor C. W., Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45:285–306. doi: 10.1146/annurev.bi.45.070176.001441. [DOI] [PubMed] [Google Scholar]
- Takeda M., Yamamura H., Oga Y. Phosphoprotein kinases associated with rat liver chromatin. Biochem Biophys Res Commun. 1971 Jan 8;42(1):103–110. doi: 10.1016/0006-291x(71)90368-8. [DOI] [PubMed] [Google Scholar]
- Teng C. S., Teng C. T., Allfrey V. G. Studies of nuclear acidic proteins. Evidence for their phosphorylation, tissue specificity, selective binding to deoxyribonucleic acid, and stimulation effects on transcription. J Biol Chem. 1971 Jun 10;246(11):3597–3609. [PubMed] [Google Scholar]
- Tymoczko J. L., Liao S. Retention of an androgen-protein complex by nuclear chromatin aggregates: heat-labile factors. Biochim Biophys Acta. 1971 Dec 21;252(3):607–611. doi: 10.1016/0304-4165(71)90168-1. [DOI] [PubMed] [Google Scholar]
- Williams-Ashman H. G., Corti A., Tadolini B. On the development of specific inhibitors of animal polyamine biosynthetic enzymes. Ital J Biochem. 1976 Jan-Feb;25(1):5–32. [PubMed] [Google Scholar]
- Williams-Ashman H. G., Pegg A. E., Lockwood D. H. Mechanisms and regulation of polyamine and putrescine biosynthesis in male genital glands and other tissues of mammals. Adv Enzyme Regul. 1969;7:291–323. doi: 10.1016/0065-2571(69)90024-7. [DOI] [PubMed] [Google Scholar]
- Williams-Ashman H. G., Schenone A. Methyl glyoxal bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases. Biochem Biophys Res Commun. 1972 Jan 14;46(1):288–295. doi: 10.1016/0006-291x(72)90661-4. [DOI] [PubMed] [Google Scholar]
- Wilson M. J., Ahmed K. Enzymic characteristics and effects of testosterone treatment on nucleolar and chromatin-associated histone phosphokinase activity of rat ventral prostate. Exp Cell Res. 1977 Apr;106(1):151–157. doi: 10.1016/0014-4827(77)90251-8. [DOI] [PubMed] [Google Scholar]
- Wilson M. J., Ahmed K. Localization of protein phosphokinase activities in the nucleolus distinct from extra-nucleolar regions in rat ventral prostate nuclei. Exp Cell Res. 1975 Jul;93(2):261–266. doi: 10.1016/0014-4827(75)90449-8. [DOI] [PubMed] [Google Scholar]
- Wilson M. J., Ahmed K. The differential response of prostatic nucleolar and extra-nucleolar protein phosphokinase activities following androgen deprivation. Endocr Res Commun. 1976;3(1):63–69. doi: 10.3109/07435807609057741. [DOI] [PubMed] [Google Scholar]
- van den Broek H. W., Noodén L. D., Sevall J. S., Bonner J. Isolation, purification, and fractionation of nonhistone chromosomal proteins. Biochemistry. 1973 Jan 16;12(2):229–236. doi: 10.1021/bi00726a009. [DOI] [PubMed] [Google Scholar]
