Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Dec 15;176(3):767–775. doi: 10.1042/bj1760767

Photosensitivity of respiration in Neurospora mitochondria. A protective role for carotenoid.

Z Ramadan-Talib, J Prebble
PMCID: PMC1186299  PMID: 154887

Abstract

1. The effect of visible light on respiratory activity was studied in two strains of Neurospora crassa, one a wild-type strain able to synthesize carotenoid and the other an albino mutant lacking carotenogenic activity. Light had no effect on growth under the conditions studied, but inhibited respiration of hyphal suspensions. the degree of inhibition being dependent on the carotenoid content of the hyphae. 2. In studies of respiration of isolated mitochondria, three types of photosensitive site were detected. These were the flavo-protein dehydrogenases themselves, a site separate from the latter also associated with the dehydrogenase but re-activatable by treatment with a thiol reagent, and the respiratory quinone, ubiquinone. Cytochrome oxidase, previously reported as photosensitive from many sources, was not appreciably affected by light in these preparations. 3. The degree of inactivation of the respiratory quinone was dependent on the amount of carotenoid in the preparation, high concentrations of the pigment in the mitochondrial membranes providing substantial protection against the effect of light. 4. Separation of the inner and outer membranes of mitochondria showed that under conditions where carotenoid appears to protect quinone, significant amounts are found in the inner mitochondrial membrane, oterhwise carotenoid is restricted to the outer membrane.

Full text

PDF
767

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aasen A. J., Jensen S. L. Fungal carotenoids. II. The structure of the carotenoid acid neurosporaxanthin. Acta Chem Scand. 1965;19(8):1843–1853. doi: 10.3891/acta.chem.scand.19-1843. [DOI] [PubMed] [Google Scholar]
  2. Aggarwal B. B., Avi-Dor Y., Tinberg H. M., Packer L. Effect of visible light on the mitochondrial inner membrane. Biochem Biophys Res Commun. 1976 Mar 22;69(2):362–368. doi: 10.1016/0006-291x(76)90530-1. [DOI] [PubMed] [Google Scholar]
  3. Aggarwal B. B., Quintanilha A. T., Cammack R., Packer L. Damage to mitochondrial electron transport and energy coupling by visible light. Biochim Biophys Acta. 1978 May 10;502(2):367–382. doi: 10.1016/0005-2728(78)90057-9. [DOI] [PubMed] [Google Scholar]
  4. Anwar M., Khan T. H., Prebble J., Zagalsky P. F. Membrane-bound carotenoid in Micrococcus luteus protects naphthoquinone from photodynamic action. Nature. 1977 Dec 8;270(5637):538–540. doi: 10.1038/270538a0. [DOI] [PubMed] [Google Scholar]
  5. Anwar M., Prebble J. The photoinactivation of the respiratory chain in Sarcina lutea (Micrococcus luteus) and protection by endogenous carotenoid. Photochem Photobiol. 1977 Nov;26(5):475–481. doi: 10.1111/j.1751-1097.1977.tb07517.x. [DOI] [PubMed] [Google Scholar]
  6. Ascenzi J. M., Cooney J. J. Action of visible light on enzymes in cell envelopes of Micrococcus roseus. Photochem Photobiol. 1975 May;21(5):307–311. doi: 10.1111/j.1751-1097.1975.tb06677.x. [DOI] [PubMed] [Google Scholar]
  7. Blanc P. L., Tuveson R. W., Sargent M. L. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation. J Bacteriol. 1976 Feb;125(2):616–625. doi: 10.1128/jb.125.2.616-625.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Codd G. A. The photoinhibition of malate dehydrogenase. FEBS Lett. 1972 Feb 1;20(2):211–214. doi: 10.1016/0014-5793(72)80797-x. [DOI] [PubMed] [Google Scholar]
  9. Epel B., Butler W. L. Cytochrome a3: destruction by light. Science. 1969 Oct 31;166(3905):621–622. doi: 10.1126/science.166.3905.621. [DOI] [PubMed] [Google Scholar]
  10. Hall D. O., Greenawalt J. W. The preparation and biochemical properties of mitochondria from Neurospora crassa. J Gen Microbiol. 1967 Sep;48(3):419–430. doi: 10.1099/00221287-48-3-419. [DOI] [PubMed] [Google Scholar]
  11. Hallermayer G., Neupert W. Lipid composition of mitochondrial outer and inner membranes of Neurospora crassa. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):279–288. doi: 10.1515/bchm2.1974.355.1.279. [DOI] [PubMed] [Google Scholar]
  12. Harding R. W., Huang P. C., Mitchell H. K. Photochemical studies of the carotenoid biosynthetic pathway in Neurospora crassa. Arch Biochem Biophys. 1969 Feb;129(2):696–707. doi: 10.1016/0003-9861(69)90230-6. [DOI] [PubMed] [Google Scholar]
  13. Howes C. D., Batra P. P., Blakeley C. F. Absolute requirement for oxygen during illumination for photoinduced carotenoid synthesis. Biochim Biophys Acta. 1969 Oct 21;189(2):298–299. doi: 10.1016/0005-2728(69)90056-5. [DOI] [PubMed] [Google Scholar]
  14. Jocelyn P. C. Some properties of mitochondrial glutathione. Biochim Biophys Acta. 1975 Sep 8;396(3):427–436. doi: 10.1016/0005-2728(75)90148-6. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. MATHEWS M. M., SISTROM W. R. The function of the carotenoid pigments of Sarcina lutea. Arch Mikrobiol. 1960;35:139–146. doi: 10.1007/BF00425002. [DOI] [PubMed] [Google Scholar]
  17. Mathews-Roth M. M., Krinsky N. I. Studies on the protective function of the carotenoid pigments of Sarcina lutea. Photochem Photobiol. 1970 Jun;11(6):419–428. doi: 10.1111/j.1751-1097.1970.tb06014.x. [DOI] [PubMed] [Google Scholar]
  18. Maxwell W. A., Chichester C. O. Photodynamic responses in Rhodotorula glutinis in the absence of added sensitizers. Photochem Photobiol. 1971 Mar;13(3):259–273. doi: 10.1111/j.1751-1097.1971.tb06111.x. [DOI] [PubMed] [Google Scholar]
  19. Neupert W., Ludwig G. D. Sites of biosynthesis of outer and inner membrane proteins of Neurospora crassa mitochondria. Eur J Biochem. 1971 Apr 30;19(4):523–532. doi: 10.1111/j.1432-1033.1971.tb01344.x. [DOI] [PubMed] [Google Scholar]
  20. Ninnemann H., Butler W. L., Epel B. L. Inhibition of respiration and destruction of cytochrome A3 by light in mitochondria and cytochrome oxidase from beef heart. Biochim Biophys Acta. 1970 Jun 30;205(3):507–512. doi: 10.1016/0005-2728(70)90116-7. [DOI] [PubMed] [Google Scholar]
  21. Ninnemann H., Butler W. L., Epel B. L. Inhibition of respiration in yeast by light. Biochim Biophys Acta. 1970 Jun 30;205(3):499–506. doi: 10.1016/0005-2728(70)90115-5. [DOI] [PubMed] [Google Scholar]
  22. PUMPHREY A. M., REDFEARN E. R. A method for determining the concentration of ubiquinone in mitochondrial preparations. Biochem J. 1960 Jul;76:61–64. doi: 10.1042/bj0760061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Prebble J., Huda A. S. Sensitivity of the electron transport chain of pigmented and non-pigmented Sarcina membranes to photodynamic action. Photochem Photobiol. 1973 Apr;17(4):255–264. doi: 10.1111/j.1751-1097.1973.tb06354.x. [DOI] [PubMed] [Google Scholar]
  24. Prebble J., Huda S. The photosensitivity of the malate oxidase system of a pigmented strain and a carotenoidless mutant of Sarcina lutea (Micrococcus luteus). Arch Microbiol. 1977 May 13;113(1-2):39–42. doi: 10.1007/BF00428577. [DOI] [PubMed] [Google Scholar]
  25. Ripley G. J., Bramley P. M. The subcellular distribution of carotenoids in Phycomyces blakesleeanus C115 car-42 mad-107 (--). Biochim Biophys Acta. 1976 Dec 20;450(3):429–440. doi: 10.1016/0005-2760(76)90016-3. [DOI] [PubMed] [Google Scholar]
  26. Roth M. M. Carotenoid pigments and photokilling by acridine orange. J Bacteriol. 1967 Jan;93(1):506–507. doi: 10.1128/jb.93.1.506-507.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES