Abstract
The uptake of Ca2+ by liver mitochondria, when phosphate movement is inhibited, occurs when Co2 is present and not in its absence. Uptake of Ca2+ to form CaCO3 yields 2H+/Ca2+. Heart mitochondria, when phosphate movement is inhibited, will take up Ca2+ with the exact equivalent of hydroxybutyrate, lactate or acetate. By providing a carrier for Cl- with tributyltin, a stoicheiometric uptake of Cl- with the Ca2+ takes place. The uptakes appear to occur without significant pH change; there appears to be no CO2-dependent uptake into heart mitochondria. Oxygenation of anaerobic heart mitochondria, in the presence of an inhibitor of phosphate movement and of generation of phosphate from internal ATP, does not yield significant change of external acidity in relation to the amount of O2 added. Use of Bromothymol Blue as an indicator of the distribution of a weak acid anion confirms that the transient nature of the response of the dye distribution to Ca2+ is connected with movement of endogenous phosphate. Bromothymol Blue accumulated in response to Ca2+ is discharged when entry of the Ca2+ (in the presence of mersalyl) is mediated with nigericin. It is concluded that Ca2+ uptakes will occur alternatively with the equivalent of anions or in exchange for endogenous K+ and that proton production is connected with the changes of ionization of phosphate (unless phosphate movement is inhibited) and in liver mitochondria with the hydration of CO2.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addanki A., Cahill F. D., Sotos J. F. Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. I. Changes during respiration and adenosine triphosphate-dependent transport of Ca++, Mg++, and Zn++. J Biol Chem. 1968 May 10;243(9):2337–2348. [PubMed] [Google Scholar]
- BRIERLEY G. P., MURER E., BACHMANN E. STUDIES ON ION TRANSPORT. III. THE ACCUMULATION OF CALCIUM AND INORGANIC PHOSPHATE BY HEART MITOCHONDRIA. Arch Biochem Biophys. 1964 Apr;105:89–102. doi: 10.1016/0003-9861(64)90239-5. [DOI] [PubMed] [Google Scholar]
- Brand M. D., Chen C. H., Lehninger A. L. Stoichiometry of H+ ejection during respiration-dependent accumulation of Ca2+ by rat liver mitochondria. J Biol Chem. 1976 Feb 25;251(4):968–974. [PubMed] [Google Scholar]
- Brand M. D., Lehninger A. L. Superstoichiometric Ca2+ uptake supported by hydrolysis of endogenous ATP in rat liver mitochondria. J Biol Chem. 1975 Oct 10;250(19):7958–7960. [PubMed] [Google Scholar]
- Brand M. D., Reynafarje B., Lehninger A. L. Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria. Proc Natl Acad Sci U S A. 1976 Feb;73(2):437–441. doi: 10.1073/pnas.73.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bygrave F. L., Ramachandran C., Smith R. L. On the mechanism by which inorganic phosphate stimulates mitochondrial calcium transport. FEBS Lett. 1977 Nov 1;83(1):155–158. doi: 10.1016/0014-5793(77)80663-7. [DOI] [PubMed] [Google Scholar]
- CARAFOLI E., ROSSI C. S., LEHNINGER A. L. CATION AND ANION BALANCE DURING ACTIVE ACCUMULATION OF CA++ AND MG++ BY ISOLATED MITOCHONDRIA. J Biol Chem. 1964 Sep;239:3055–3061. [PubMed] [Google Scholar]
- CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
- Chance B., Mela L. Hydrogen ion concentration changes in mitochondrial membranes. J Biol Chem. 1966 Oct 25;241(20):4588–4599. [PubMed] [Google Scholar]
- Colonna R., Dell'Antone P., Felice Azzone G. Binding changes and apparent pK a shifts of bromthymol blue as tools for mitochondrial reactions. Arch Biochem Biophys. 1972 Jul;151(1):295–303. doi: 10.1016/0003-9861(72)90500-0. [DOI] [PubMed] [Google Scholar]
- Elder J. A., Lehninger A. L. Respiration-dependent transport of carbon dioxide into rat liver mitochondria. Biochemistry. 1973 Feb 27;12(5):976–982. doi: 10.1021/bi00729a029. [DOI] [PubMed] [Google Scholar]
- Estrada S., de Céspedes C., Calderón E. Accumulation of calcium and phosphate stimulated by carboxylic antibiotics into mitochondria. J Bioenerg. 1972 Aug;3(5):361–375. doi: 10.1007/BF01516075. [DOI] [PubMed] [Google Scholar]
- Ghosh A. K., Chance B. Kinetic and equilibrium studies on the reversal of calcium-induced intramitochondrial alkalinity by permeant anions. Arch Biochem Biophys. 1970 Jun;138(2):483–492. doi: 10.1016/0003-9861(70)90372-3. [DOI] [PubMed] [Google Scholar]
- Harris E. J. A physico-chemical basis for anion, cation and proton distributions between rat-liver mitochondria and the suspending medium. J Bioenerg. 1973 Jan;4(1):179–185. doi: 10.1007/BF01516055. [DOI] [PubMed] [Google Scholar]
- Harris E. J., Bangham J. A., Zukovic B. Equilibration of chloride and pyruvate distributions between liver mitochondria and medium mediated by organo-tin salts. FEBS Lett. 1973 Feb 1;29(3):339–344. doi: 10.1016/0014-5793(73)80054-7. [DOI] [PubMed] [Google Scholar]
- Harris E. J., Berent C. Calcium ion-induced uptakes and transormations of substrates in liver mitochondria. Biochem J. 1969 Dec;115(4):645–652. doi: 10.1042/bj1150645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. J., Tate C., Manger J. R., Bangham J. A. The effects of colloids on the appearance and substrate permeability of rat liver mitochondria. J Bioenerg. 1971 Aug;2(3):221–232. doi: 10.1007/BF01648917. [DOI] [PubMed] [Google Scholar]
- Harris E. J. The importance of CO2 for Ca2+ uptake by some mitochondria. Nature. 1978 Aug 24;274(5673):820–821. doi: 10.1038/274820a0. [DOI] [PubMed] [Google Scholar]
- Harris E. J. The uptake and release of calcium by heart mitochondria. Biochem J. 1977 Dec 15;168(3):447–456. doi: 10.1042/bj1680447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. J., Zaba B. The phosphate requirement for Ca2+-uptake by heart and liver mitochondria. FEBS Lett. 1977 Jul 15;79(2):284–290. doi: 10.1016/0014-5793(77)80804-1. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lofrumento N. E., Hoek J. B., Meyer A. J., Tager J. M. Phosphate transport in rat-liver mitochondria. Biochim Biophys Acta. 1971 Mar 2;226(2):297–308. doi: 10.1016/0005-2728(71)90096-x. [DOI] [PubMed] [Google Scholar]
- Pedersen P. L., Coty W. A. Energy-dependent accumulation of calcium and phosphate by purified inner membrane vesicles of rat liver mitochondria. J Biol Chem. 1972 May 25;247(10):3107–3113. [PubMed] [Google Scholar]
- Pozzan T., Bragadin M., Azzone G. F. The effect of endogenous phosphate on the H+/Mn2+ ratio and the state of Mn2+ in the mitochondrial matrix. Eur J Biochem. 1976 Dec;71(1):93–99. doi: 10.1111/j.1432-1033.1976.tb11093.x. [DOI] [PubMed] [Google Scholar]
- Pressman B. C., Harris E. J., Jagger W. S., Johnson J. H. Antibiotic-mediated transport of alkali ions across lipid barriers. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1949–1956. doi: 10.1073/pnas.58.5.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSSI C. S., LEHNINGER A. L. STOICHIOMETRIC RELATIONSHIPS BETWEEN ACCUMULATION OF IONS BY MITOCHONDRIA AND THE ENERGY-COUPLING SITES IN THE RESPIRATORY CHAIN. Biochem Z. 1963;338:698–713. [PubMed] [Google Scholar]
- Rasmussen H., Chance B., Ogata E. A mechanism for the reactions of calcium with mitochondria. Proc Natl Acad Sci U S A. 1965 May;53(5):1069–1076. doi: 10.1073/pnas.53.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reed K. C., Bygrave F. L. Methodology for in vitro studies of Ca-2+ transport. Anal Biochem. 1975 Jul;67(1):44–54. doi: 10.1016/0003-2697(75)90270-5. [DOI] [PubMed] [Google Scholar]
- Rottenberg H., Scarpa A. Calcium uptake and membrane potential in mitochondria. Biochemistry. 1974 Nov 5;13(23):4811–4817. doi: 10.1021/bi00720a020. [DOI] [PubMed] [Google Scholar]
- Scarpa A., Azzone G. F. The mechanism of ion translocation in mitochondria. 4. Coupling of K+ efflux with Ca2+ uptake. Eur J Biochem. 1970 Feb;12(2):328–335. doi: 10.1111/j.1432-1033.1970.tb00854.x. [DOI] [PubMed] [Google Scholar]
- Skilleter D. N. The decrease of mitochondrial substrate uptake caused by trialkyltin and trialkyl-lead compounds in chloride media and its relevance to inhibition of oxidative phosphorylation. Biochem J. 1975 Feb;146(2):465–471. doi: 10.1042/bj1460465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stockdale M., Dawson A. P., Selwyn M. J. Effects of trialkyltin and triphenyltin compounds on mitochondrial respiration. Eur J Biochem. 1970 Aug;15(2):342–351. doi: 10.1111/j.1432-1033.1970.tb01013.x. [DOI] [PubMed] [Google Scholar]
- Tyler D. D. Evidence of a phosphate-transporter system in the inner membrane of isolated mitochondria. Biochem J. 1969 Mar;111(5):665–678. doi: 10.1042/bj1110665. [DOI] [PMC free article] [PubMed] [Google Scholar]