Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Jan 1;177(1):275–282. doi: 10.1042/bj1770275

Diamine and polyamine oxidase activities in normal and transformed cells

Gérard Quash *, Tay Keolouangkhot *, Louis Gazzolo *, Huguette Ripoll *, Simone Saez
PMCID: PMC1186366  PMID: 106846

Abstract

1. The activity of diamine oxidase (EC 1.4.3.6) in normal rat kidney cells and in normal rat kidney cells transformed by avian sarcoma virus (B77 strain) growing in tissue culture varies with the stage of growth. There is an initial stimulation of activity by 24h after seeding, followed by a steep decline during exponential growth (48–72h). Enzyme activity decreases even further as the cells reach saturation density (confluence) after 4 days in culture when the activity in normal rat kidney cells is twice as high as that in transformed cells. 2. Differences of about the same order of magnitude are observed between transformed human cells HeLa, HEp2 (a human epithelioid carcinoma) and normal human fibroblasts, in chicken cells between normal myeloblasts and leukaemic myeloblasts, and in rats between biopsy material from normal mammary tissue and 9,10-dimethylbenz[a]anthracene-induced mammary tumours. 3. Polyamine oxidase activity also varies with the growth of transformed rat kidney cells, but shows no significant variation with the growth of normal rat kidney cells between 24 and 96h after seeding. The activity in cells at confluence is from 3- to 5-fold lower in the transformed than in the normal rat kidney cells. 4. A similar 5–10-fold decrease in activity has been found in 9,10-dimethylbenz[a]anthracene-induced mammary tumours in rats and in human oesophageal tumours. 5. Possible reasons for these observations and the contribution of these two enzymes to cellular putrescine concentrations are discussed.

Full text

PDF
275

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachrach U., Reches B. Enzymic assay for spermine and spermidine. Anal Biochem. 1966 Oct;17(1):38–48. doi: 10.1016/0003-2697(66)90005-4. [DOI] [PubMed] [Google Scholar]
  2. Bardsley W. G., Ashford J. S. Inhibition of pig kidney diamine oxidase by substrate analogues. Biochem J. 1972 Jun;128(2):253–263. doi: 10.1042/bj1280253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Don S., Wiener H., Bachrach U. Specific increase in polyamine levels in chick embryo cells transformed by Rous sarcoma virus. Cancer Res. 1975 Jan;35(1):194–198. [PubMed] [Google Scholar]
  4. Guha S. K., Jänne J. Inhibition of ornithine decarboxylase in vivo in rat ovary. Biochem Biophys Res Commun. 1977 Mar 7;75(1):136–142. doi: 10.1016/0006-291x(77)91300-6. [DOI] [PubMed] [Google Scholar]
  5. Hölttä E. Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry. 1977 Jan 11;16(1):91–100. doi: 10.1021/bi00620a015. [DOI] [PubMed] [Google Scholar]
  6. KOBAYASHI Y. BLOOD LEVELS OF DIAMINE OXIDASE AS A TEST FOR PREGNANCY. J Lab Clin Med. 1963 Oct;62:699–702. [PubMed] [Google Scholar]
  7. Kallio A., Pösö H., Guha S. K., Jänne J. Polyamines and their biosynthetic enzymes in Ehrlich ascites-carcinoma cells. Modification of tumour polyamine pattern by diamines. Biochem J. 1977 Jul 15;166(1):89–94. doi: 10.1042/bj1660089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kallio A., Pösö H., Jänne J. Inhibition of prereplicative polyamine accumulation in regenerating rat liver. Biochim Biophys Acta. 1977 Dec 2;479(3):345–353. doi: 10.1016/0005-2787(77)90116-2. [DOI] [PubMed] [Google Scholar]
  9. Kawai S., Hanafusa H. The effects of reciprocal changes in temperature on the transformed state of cells infected with a rous sarcoma virus mutant. Virology. 1971 Nov;46(2):470–479. doi: 10.1016/0042-6822(71)90047-x. [DOI] [PubMed] [Google Scholar]
  10. Kluetz M. D., Schmidt P. G. Diamine oxidase: molecular weight and subunit analysis. Biochem Biophys Res Commun. 1977 May 9;76(1):40–45. doi: 10.1016/0006-291x(77)91665-5. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Mamont P. S., Böhlen P., McCann P. P., Bey P., Schuber F., Tardif C. Alpha-methyl ornithine, a potent competitive inhibitor of ornithine decarboxylase, blocks proliferation of rat hepatoma cells in culture. Proc Natl Acad Sci U S A. 1976 May;73(5):1626–1630. doi: 10.1073/pnas.73.5.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morris D. R., Koffron K. L. Putrescine biosynthesis in Escherichia coli. Regulation through pathway selection. J Biol Chem. 1969 Nov 25;244(22):6094–6099. [PubMed] [Google Scholar]
  14. Pohjanpelto P., Raina A. Identification of a growth factor produced by human fibroblasts in vitro as putrescine. Nat New Biol. 1972 Feb 23;235(60):247–249. doi: 10.1038/newbio235247a0. [DOI] [PubMed] [Google Scholar]
  15. Pollack R. E., Green H., Todaro G. J. Growth control in cultured cells: selection of sublines with increased sensitivity to contact inhibition and decreased tumor-producing ability. Proc Natl Acad Sci U S A. 1968 May;60(1):126–133. doi: 10.1073/pnas.60.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pöso H., Jänne J. Inhibition of ornithine decarboxylase activity and spermidine accumulation in regenerating rat liver. Biochem Biophys Res Commun. 1976 Apr 19;69(4):885–892. doi: 10.1016/0006-291x(76)90456-3. [DOI] [PubMed] [Google Scholar]
  17. Quash G., Calogero H., Fossar N., Ferdinand A., Taylor D. Modification of diamine oxidase activity in vitro by metabolites of asparagine and differences in asparagine decarboxylation in normal and virus-transformed baby hamster kidney cells. Biochem J. 1976 Sep 1;157(3):599–608. doi: 10.1042/bj1570599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Quash G., Taylor D. R. Serum beta-aminopropionaldehyde: identification and origin. Clin Chim Acta. 1970 Oct;30(1):17–23. doi: 10.1016/0009-8981(70)90187-7. [DOI] [PubMed] [Google Scholar]
  19. Relyea N., Rando R. R. Potent inhibition of ornithine decarboxylase by beta,gamma unsaturated substrate analogs. Biochem Biophys Res Commun. 1975 Nov 3;67(1):392–398. doi: 10.1016/0006-291x(75)90328-9. [DOI] [PubMed] [Google Scholar]
  20. Tabor C. W., Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45:285–306. doi: 10.1146/annurev.bi.45.070176.001441. [DOI] [PubMed] [Google Scholar]
  21. Tsuboi A., Kurotsu T., Terasima T. Changes in protein content per cell during growth of mouse L cells. Exp Cell Res. 1976 Dec;103(2):257–261. doi: 10.1016/0014-4827(76)90262-7. [DOI] [PubMed] [Google Scholar]
  22. Ziemba-Zak B., Rosiek O., Sabliński J. Putrescine and diamineoxidase induced abnormalities in the course of chromosome spiralization and despiralization. Folia Biol (Krakow) 1965;13(2):183–190. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES