Abstract
The intrinsic fluorescence characteristics of tyrosine and tryptophan residues in the proteins of isolated central-nervous-system myelin were investigated to gain information concerning the location of these residues within the intact membrane system. Tryptophan fluorescence from isolated myelin has an emission maximum at 325 nm that appears to arise from at least two different populations of tryptophan residues. Further evidence for heterogeneity of tryptophan location in the membrane is obtained from quenching studies with chloroform and acrylamide. It is speculated that one tryptophan population is hydrophobically situated and may be derived from the proteolipid protein of myelin, whereas the other tryptophan population is located at the membrane surface and may arise from the extrinsic basic protein. A significant tyrosine fluorescence is detected from isolated myelin, indicating that some of these residues are not quenched by structural interactions within the lipid--protein membrane system. Studies with freeze-dried resuspended myelin suggest that the structural arrangement of protein components in the dried rehydrated membrane system differs significantly from that of the freshly isolated myelin membrane.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avruch J., Carter J. R., Martin D. B. Insulin-stimulated plasma membranes from rat adipocytes: their physiological and physicochemical properties. Biochim Biophys Acta. 1972 Oct 23;288(1):27–42. doi: 10.1016/0005-2736(72)90220-9. [DOI] [PubMed] [Google Scholar]
- BEAVEN G. H., HOLIDAY E. R. Ultraviolet absorption spectra of proteins and amino acids. Adv Protein Chem. 1952;7:319–386. doi: 10.1016/s0065-3233(08)60022-4. [DOI] [PubMed] [Google Scholar]
- Burstein E. A., Permyakov E. A., Yashin V. A., Burkhanov S. A., Finazzi Agro A. The fine structure of luminescence spectra of azurin. Biochim Biophys Acta. 1977 Mar 28;491(1):155–159. doi: 10.1016/0005-2795(77)90051-4. [DOI] [PubMed] [Google Scholar]
- Burstein E. A., Vedenkina N. S., Ivkova M. N. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol. 1973 Oct;18(4):263–279. doi: 10.1111/j.1751-1097.1973.tb06422.x. [DOI] [PubMed] [Google Scholar]
- Cockle S. A., Epand R. M., Moscarello M. A. Intrinsic fluorescence of a hydrophobic myelin protein and some complexes with phospholipids. Biochemistry. 1978 Feb 21;17(4):630–637. doi: 10.1021/bi00597a011. [DOI] [PubMed] [Google Scholar]
- Crang A. J., Rumsby M. G. Solubilization of isolated central-nervous-system myelin preparations by the amniotic detergent sodium dodecyl sulphate. Biochem J. 1978 Sep 1;173(3):909–917. doi: 10.1042/bj1730909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 1976 Feb 10;15(3):672–680. doi: 10.1021/bi00648a035. [DOI] [PubMed] [Google Scholar]
- FINEAN J. B. The nature and stability of nerve myelin. Int Rev Cytol. 1961;12:303–336. doi: 10.1016/s0074-7696(08)60543-4. [DOI] [PubMed] [Google Scholar]
- Gérard D., Lemieux G., Laustriat G. Intrinsic fluorescence of S4 and S7 E. coli ribosomal proteins. Photochem Photobiol. 1975 Sep-Oct;22(3-4):89–95. doi: 10.1111/j.1751-1097.1975.tb08818.x. [DOI] [PubMed] [Google Scholar]
- Hoss W., Abood L. G. Fluidity in hydrophobic protein regions of synaptic membranes. Eur J Biochem. 1974 Dec 16;50(1):177–181. doi: 10.1111/j.1432-1033.1974.tb03885.x. [DOI] [PubMed] [Google Scholar]
- Jones A. J., Rumsby M. G. Interaction of the myelin basic protein with the anionic detergent sodium dodecyl sulphate. Biochem J. 1978 Feb 1;169(2):281–285. doi: 10.1042/bj1690281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones A. J., Rumsby M. G. The intrinsic fluorescence characteristics of the myelin basic protein. J Neurochem. 1975 Nov;25(5):565–572. doi: 10.1111/j.1471-4159.1975.tb04369.x. [DOI] [PubMed] [Google Scholar]
- Rumsby M. G. Organization and structure in central-nerve myelin. Biochem Soc Trans. 1978;6(2):448–462. doi: 10.1042/bst0060448. [DOI] [PubMed] [Google Scholar]
- Rumsby M. G., Riekkinen P. J., Arstila A. V. A critical evaluation of myelin purification. Non-specific esterase activity associated with central nerve myelin preparations. Brain Res. 1970 Dec 18;24(3):495–516. doi: 10.1016/0006-8993(70)90188-5. [DOI] [PubMed] [Google Scholar]
- Shinitzky M., Rivnay B. Degree of exposure of membrane proteins determined by fluorescence quenching. Biochemistry. 1977 Mar 8;16(5):982–986. doi: 10.1021/bi00624a027. [DOI] [PubMed] [Google Scholar]
- Sonenberg M. Interaction of human growth hormone and human erythrocyte membranes studies by intrinsic fluorescence. Proc Natl Acad Sci U S A. 1971 May;68(5):1051–1055. doi: 10.1073/pnas.68.5.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TEALE F. W. The ultraviolet fluorescence of proteins in neutral solution. Biochem J. 1960 Aug;76:381–388. doi: 10.1042/bj0760381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winder A. F., Gent W. L. Correction of light-scattering errors in spectrophotometric protein determinations. Biopolymers. 1971;10(7):1243–1251. doi: 10.1002/bip.360100713. [DOI] [PubMed] [Google Scholar]
