Abstract
Glutathione derivatives inhibit glutathione S-transferase A [cf. Biochem. J. (1975) 147, 513--522]. The steady-state kinetics of this inhibition have been investigated in detail by using S-octyglutathione, glutathione disulphide and S-(2-chloro-4-nitrophenyl)glutathione: the last compound is a product of the enzyme-catalused reaction. Interpreted in terms of generalized denotations of inhibition patterns, the compounds were found to be competitive with the substrate glutathione. Double-inhibition experiments involving simultaneous use of two inhibitors indicated exclusive binding of the inhibitors to the enzyme. The discrimination between alternative rate equations has been based on the results of weighted non-linear regression analysis. The experimental error was determined by replicate measurements and was found to increase with velocity. The established error structure was used as a basis for weighting in the regression and to construct confidence levels for the judgement of goodness-of-fit of rate equations fitted to experimental data. The results obtained support a steady-state random model for the mechanism of action of glutathione S-transferase A and exclude a number of simple kinetic models.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Askelöf P., Guthenberg C., Jakobson I., Mannervik B. Purification and characterization of two glutathione S-aryltransferase activities from rat liver. Biochem J. 1975 Jun;147(3):513–522. doi: 10.1042/bj1470513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Askelöf P., Korsfeldt M., Mannervik B. Error structure of enzyme kinetic experiments. Implications for weighting in regression analysis of experimental data. Eur J Biochem. 1976 Oct 1;69(1):61–67. doi: 10.1111/j.1432-1033.1976.tb10858.x. [DOI] [PubMed] [Google Scholar]
- Bártfai T., Mannervik B. A procedure based on statistical criteria for discrimination between steady state kinetic models. FEBS Lett. 1972 Oct 1;26(1):252–256. doi: 10.1016/0014-5793(72)80585-4. [DOI] [PubMed] [Google Scholar]
- Fjellstedt T. A., Allen R. H., Duncan B. K., Jakoby W. B. Enzymatic conjugation of epoxides with glutathione. J Biol Chem. 1973 May 25;248(10):3702–3707. [PubMed] [Google Scholar]
- Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
- Jakobson I., Askelöf P., Warholm M., Mannervik B. A steady-state-kinetic random mechanism for glutathione S-transferase A from rat liver. A model involving kinetically significant enzyme-product complexes in the forward reaction. Eur J Biochem. 1977 Jul 15;77(2):253–262. doi: 10.1111/j.1432-1033.1977.tb11664.x. [DOI] [PubMed] [Google Scholar]
- Mannervik B. A branching reaction mechanism of glutathione reductase. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1151–1158. doi: 10.1016/0006-291x(73)90585-8. [DOI] [PubMed] [Google Scholar]
- Mannervik B., Askelöf P. Absence of a ping-pong pathway in the kinetic mechanism of glutathione S-transferase A from rat liver. Evidence based on quantitative comparison of the asymptotic properties of experimental data and alternative rat equations. FEBS Lett. 1975 Aug 15;56(2):218–221. doi: 10.1016/0014-5793(75)81095-7. [DOI] [PubMed] [Google Scholar]
- Mannervik B., Bártfai T. Discrimination between mathematical models of biological systems exemplified by enzyme steady state kinetics. Acta Biol Med Ger. 1973;31(2):203–215. [PubMed] [Google Scholar]
- Mannervik B. Graphical analysis of steady-state kinetic data of multireactant enzymes. Anal Biochem. 1975 Jan;63(1):12–16. doi: 10.1016/0003-2697(75)90184-0. [DOI] [PubMed] [Google Scholar]
- Pabst M. J., Habig W. H., Jakoby W. B. Glutathione S-transferase A. A novel kinetic mechanism in which the major reaction pathway depends on substrate concentration. J Biol Chem. 1974 Nov 25;249(22):7140–7147. [PubMed] [Google Scholar]