Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Mar 15;178(3):673–680. doi: 10.1042/bj1780673

Modulation of Ca2+ efflux from heart mitochondria.

E J Harris
PMCID: PMC1186568  PMID: 454375

Abstract

The efflux of Ca2+ from rat heart mitochondria has been examined by using Ruthenium Red to inhibit active uptake after predetermined loadings with Ca2+. The efflux is proportional to the internal Ca2+ load; it is increased by Na+ applied when the mitochondria are respiring and this effect is inhibited by oligomycin. The efflux of Ca2+ is diminished by ATP and by ADP, with the latter the more effective. Both active uptake and efflux of Ca2+ are slowed by bongkrekic acid; this action has a time lag. The lower efflux found with the nucleotides and with bongkrekic acid seems to correspond to the more condensed state seen in the electron microscope when these agents are applied [Stoner & Sirak (1973) J. Cell Biol. 56, 51-64, 65-73]. The results are discussed in relation to the less-permeable state being contingent upon nucleotide binding to the membrane.

Full text

PDF
673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Shaikhaly M. H., Baum H. Associated effluxes of calcium and adenine nucleotides from mitochondria: mediation by throxine and other agents, and inhibition by bongkrekic acid and adenosine diphosphate [proceedings]. Biochem Soc Trans. 1979 Feb;7(1):215–216. doi: 10.1042/bst0070215. [DOI] [PubMed] [Google Scholar]
  2. Al-Shaikhaly M. M., Baum H. Do mercurials and thyroxine potentiate calcium-dependent phospholipase activity in mitochondria? [proceedings]. Biochem Soc Trans. 1977;5(4):1093–1095. doi: 10.1042/bst0051093. [DOI] [PubMed] [Google Scholar]
  3. Asimakis G. K., Sordahl L. A. Effects of atractyloside and palmitoyl coenzyme A on calcium transport in cardiac mitochondria. Arch Biochem Biophys. 1977 Feb;179(1):200–210. doi: 10.1016/0003-9861(77)90104-7. [DOI] [PubMed] [Google Scholar]
  4. Binet A., Volfin P. ADP requirement for prevention by a cytosolic factor of Mg2+ and Ca2+ release from rat liver mitochondria. Arch Biochem Biophys. 1974 Oct;164(2):756–764. doi: 10.1016/0003-9861(74)90090-3. [DOI] [PubMed] [Google Scholar]
  5. Brand M. D., Lehninger A. L. Superstoichiometric Ca2+ uptake supported by hydrolysis of endogenous ATP in rat liver mitochondria. J Biol Chem. 1975 Oct 10;250(19):7958–7960. [PubMed] [Google Scholar]
  6. Bygrave F. L., Heaney T. P., Ramachandran C. Submitochondrial location of ruthenium red-sensitive calcium-ion transport and evidence for its enrichment in a specific population of rat liver mitochondria. Biochem J. 1978 Sep 15;174(3):1011–1019. doi: 10.1042/bj1741011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crompton M., Künzi M., Carafoli E. The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem. 1977 Oct 3;79(2):549–558. doi: 10.1111/j.1432-1033.1977.tb11839.x. [DOI] [PubMed] [Google Scholar]
  8. Gunter T. E., Gunter K. K., Puskin J. S., Russell P. R. Efflux of Ca2+ and Mn2+ from rat liver mitochondria. Biochemistry. 1978 Jan 24;17(2):339–345. doi: 10.1021/bi00595a023. [DOI] [PubMed] [Google Scholar]
  9. Harris E. J. The uptake and release of calcium by heart mitochondria. Biochem J. 1977 Dec 15;168(3):447–456. doi: 10.1042/bj1680447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harris E. J., Zaba B. The phosphate requirement for Ca2+-uptake by heart and liver mitochondria. FEBS Lett. 1977 Jul 15;79(2):284–290. doi: 10.1016/0014-5793(77)80804-1. [DOI] [PubMed] [Google Scholar]
  11. Henderson P. J., Lardy H. A. Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem. 1970 Mar 25;245(6):1319–1326. [PubMed] [Google Scholar]
  12. Hunter D. R., Haworth R. A., Southard J. H. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem. 1976 Aug 25;251(16):5069–5077. [PubMed] [Google Scholar]
  13. Klingenberg M., Grebe K., Heldt H. W. On the inhibition of the adenine nucleotide translocation by bongkrekic acid. Biochem Biophys Res Commun. 1970 May 11;39(3):344–351. doi: 10.1016/0006-291x(70)90582-6. [DOI] [PubMed] [Google Scholar]
  14. Klingenberg M. Metabolite transport in mitochondria: an example for intracellular membrane function. Essays Biochem. 1970;6:119–159. [PubMed] [Google Scholar]
  15. Leblanc P., Clauser H. ADP and Mg2+ requirement for Ca2+ accumulation by hog heart mitochondria. Correlation with energy coupling. Biochim Biophys Acta. 1974 Apr 23;347(1):87–101. doi: 10.1016/0005-2728(74)90202-3. [DOI] [PubMed] [Google Scholar]
  16. Leblanc P., Clauser H. Study of the mitochondrial phosphate carrier in the course of calcium phosphate accumulation: a requirement for Mg2+ and ADP of its sensitivity to thiol reagents. Biochim Biophys Acta. 1974 May 22;347(2):193–201. doi: 10.1016/0005-2728(74)90044-9. [DOI] [PubMed] [Google Scholar]
  17. Lehninger A. L., Vercesi A., Bababunmi E. A. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1690–1694. doi: 10.1073/pnas.75.4.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lofrumento N. E., Zanotti F. Calcium release induced by N-ethylmaleimide in rat liver mitochondria. FEBS Lett. 1978 Mar 15;87(2):186–190. doi: 10.1016/0014-5793(78)80328-7. [DOI] [PubMed] [Google Scholar]
  19. Luft J. H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec. 1971 Nov;171(3):347–368. doi: 10.1002/ar.1091710302. [DOI] [PubMed] [Google Scholar]
  20. Nicholls D. G. Hamster brown-adipose-tissue mitochondria. The chloride permeability of the inner membrane under respiring conditions, the influence of purine nucleotides. Eur J Biochem. 1974 Dec 2;49(3):585–593. doi: 10.1111/j.1432-1033.1974.tb03862.x. [DOI] [PubMed] [Google Scholar]
  21. Peng C. F., Straub K. D., Kane J. J., Murphy M. L., Wadkins C. L. Effects of adenine nucleotide translocase inhibitors on dinitrophenol-induced Ca2+ efflux from pig heart mitochondria. Biochim Biophys Acta. 1977 Nov 17;462(2):403–413. doi: 10.1016/0005-2728(77)90138-4. [DOI] [PubMed] [Google Scholar]
  22. Pozzan T., Bragadin M., Azzone G. F. Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux. Biochemistry. 1977 Dec 13;16(25):5618–5625. doi: 10.1021/bi00644a036. [DOI] [PubMed] [Google Scholar]
  23. Rafael J., Ludolph H. J., Hohorst H. J. Mitochondrien aus braunem Fettgewebe: Entkopplung der Atmungskettenphosphorylierung durch langkettige Fettsäuren und Rekopplung durch Guanosintriphosphat. Hoppe Seylers Z Physiol Chem. 1969 Sep;350(9):1121–1131. [PubMed] [Google Scholar]
  24. Spencer T., Bygrave F. L. The role of mitochondria in modifying the cellular ionic environment: studies of the kinetic accumulation of calcium by rat liver mitochondria. J Bioenerg. 1973 Apr;4(3):347–362. doi: 10.1007/BF01648977. [DOI] [PubMed] [Google Scholar]
  25. Stoner C. D., Sirak H. D. Adenine nucleotide-induced contraction of the inner mitochondrial membrane. I. General characterization. J Cell Biol. 1973 Jan;56(1):51–64. doi: 10.1083/jcb.56.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stoner C. D., Sirak H. D. Adenine nucleotide-induced contraction on the inner mitochondrial membrane. II. Effect of bongkrekic acid. J Cell Biol. 1973 Jan;56(1):65–73. doi: 10.1083/jcb.56.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vasington F. D., Gazzotti P., Tiozzo R., Carafoli E. The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta. 1972 Jan 21;256(1):43–54. doi: 10.1016/0005-2728(72)90161-2. [DOI] [PubMed] [Google Scholar]
  28. Weidemann M. J., Erdelt H., Klingenberg M. Effect of bongkrekic acid on the adenine nucleotide carrier in mitochondria: tightening of adenine nucleotide binding and differentiation between inner and outer sites. Biochem Biophys Res Commun. 1970 May 11;39(3):363–370. doi: 10.1016/0006-291x(70)90585-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES