Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Jun 1;179(3):509–514. doi: 10.1042/bj1790509

Unfolding and refolding of phospholipase C from Bacillus cereus in solutions of guanidinium chloride.

C Little, S Johansen
PMCID: PMC1186658  PMID: 113000

Abstract

1. Protein-fluorescence studies indicated that phospholipase C from Bacillus cereus is denatured in solutions of guanidinium chloride. The denaturation was not thermodynamically reversible and followed biphasic kinetics. 2. Guanidinium chloride solutions released the structural Zn2+ from the enzyme and rendered all histidine residues chemically reactive. In the presence of free Zn1+ the enzyme was much more resistant to denaturation. Also, the addition for free Zn2+ to the denatured enzyme induced refolding. 3. The Zn2+-free apoenzyme was much more sensitive to guanidinium chloride than was the native enzyme and the denaturation appeared to be thermodynamically reversible. 4. Guanidinium chloride denaturation was associated with a reversible inactivation of the enzyme. Heat-inactivated, coagulated enzyme was substantially re-activated on dissolution in guanidinium chloride solutions followed by dialysis against a Zn2+-containing buffer.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandts J. F., Halvorson H. R., Brennan M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 1975 Nov 4;14(22):4953–4963. doi: 10.1021/bi00693a026. [DOI] [PubMed] [Google Scholar]
  2. Ikai A., Fish W. W., Tanford C. Kinetics of unfolding and refolding of proteins. II. Results for cytochrome c. J Mol Biol. 1973 Jan 10;73(2):165–184. doi: 10.1016/0022-2836(73)90321-5. [DOI] [PubMed] [Google Scholar]
  3. Ikai A., Tanford C. Kinetic evidence for incorrectly folded intermediate states in the refolding of denatured proteins. Nature. 1971 Mar 12;230(5289):100–102. doi: 10.1038/230100a0. [DOI] [PubMed] [Google Scholar]
  4. Ikai A., Tanford C. Kinetics of unfolding and refolding of proteins. I. Mathematical analysis. J Mol Biol. 1973 Jan 10;73(2):145–163. doi: 10.1016/0022-2836(73)90320-3. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Lin L. N., Brandts J. F. Further evidence suggesting that the slow phase in protein unfolding and refolding is due to proline isomerization: a kinetic study of carp parvalbumins. Biochemistry. 1978 Sep 19;17(19):4102–4110. doi: 10.1021/bi00612a036. [DOI] [PubMed] [Google Scholar]
  7. Little C., Aurebekk B., Otnaess A. B. Purification by affinity chromatography of phospholipase C from Bacillus cereus. FEBS Lett. 1975 Apr 1;52(2):175–179. doi: 10.1016/0014-5793(75)80800-3. [DOI] [PubMed] [Google Scholar]
  8. Little C. Conformational studies on phospholipase C from Bacillus cereus. The effect of urea on the enzyme. Biochem J. 1978 Dec 1;175(3):977–986. doi: 10.1042/bj1750977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Little C., Otnåss A. B. The metal ion dependence of phospholipase C from Bacillus cereus. Biochim Biophys Acta. 1975 Jun 24;391(2):326–333. doi: 10.1016/0005-2744(75)90256-9. [DOI] [PubMed] [Google Scholar]
  10. Little C. The histidine residues of phospholipase C from Bacillus cereus. Biochem J. 1977 Nov 1;167(2):399–404. doi: 10.1042/bj1670399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miller J. F., Bolen D. W. A guanidine hydrochloride induced change in ribonuclease without gross unfolding. Biochem Biophys Res Commun. 1978 Mar 30;81(2):610–615. doi: 10.1016/0006-291x(78)91579-6. [DOI] [PubMed] [Google Scholar]
  12. Nozaki Y. The preparation of guanidine hydrochloride. Methods Enzymol. 1972;26:43–50. doi: 10.1016/s0076-6879(72)26005-0. [DOI] [PubMed] [Google Scholar]
  13. Otnaess A. B., Little C., Sletten K., Wallin R., Johnsen S., Flengsrud R., Prydz H. Some characteristics of phospholipase C from Bacillus cereus. Eur J Biochem. 1977 Oct 3;79(2):459–468. doi: 10.1111/j.1432-1033.1977.tb11828.x. [DOI] [PubMed] [Google Scholar]
  14. Otnaess A. B., Prydz H., Bjorklid E., Berre A. Phospholipase C from Bacillus cereus and its use in studies of tissue thromboplastin. Eur J Biochem. 1972 May 23;27(2):238–243. doi: 10.1111/j.1432-1033.1972.tb01832.x. [DOI] [PubMed] [Google Scholar]
  15. Prakash V., Nandi P. K. Dissociation, aggregation and denaturation of sesame alpha-globulin in urea and guanidine hydrochloride solutions. Int J Pept Protein Res. 1977;9(2):97–106. doi: 10.1111/j.1399-3011.1977.tb03469.x. [DOI] [PubMed] [Google Scholar]
  16. Robson B., Pain R. H. The mechanism of folding of globular proteins. Suitability of a penicillinase from Staphylococcus Aureus as a model for refolding studies. Biochem J. 1976 May 1;155(2):325–330. doi: 10.1042/bj1550325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Russell A. E., Cooper D. R. Effect of compounds of the urea-guanidinium class on renaturation and thermal stability of acid-soluble collagen. Biochem J. 1972 May;127(5):855–863. doi: 10.1042/bj1270855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zwaal R. F., Roelofsen B., Comfurius P., van Deenen L. L. Complete purification and some properties of phospholipase C from Bacillus cereus. Biochim Biophys Acta. 1971 Apr 13;233(2):474–479. doi: 10.1016/0005-2736(71)90347-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES