Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Jun 1;179(3):549–553. doi: 10.1042/bj1790549

Enzymes of myo-inositol and inositol lipid metabolism in rats with streptozotocin-induced diabetes.

P H Whiting, K P Palmano, J N Hawthorne
PMCID: PMC1186662  PMID: 224862

Abstract

Diabetes, with only mild ketosis, was induced in male rats by a single injection of streptozotocin. After 12 weeks the specific activities of enzymes concerned with the metabolism of inositol and of inositol lipids were measured in various tissues. Inositol 1-phosphate synthase (EC 5.5.1.4) was most active in testis and the activity was significantly less in diabetic rats than in controls on a similar diet. Inositol oxygenase (EC 1.13.99.1), which converts myo-inositol into glucuronic acid, was also less active in kidney from diabetic animals. CDP-diacylglycerol-inositol phosphatidyltransferase (EC 2.7.8.11) and phosphatidylinositol 4-phosphate kinase (EC 2.7.1.68) showed decreased specific activities in brain and sciatic nerve of diabetic rats. By contrast the diabetic state did not affect the specific activities of phosphatidylinositol kinase (EC 2.7.1.67) or phosphatidylinositol 4,5-bisphosphate phosphatase (EC 3.1.3.36) in these tissues. The results are discussed in relation to diabetic neuropathy.

Full text

PDF
549

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett J. E., Brice R. E., Corina D. L. A colorimetric determination of inositol monophosphates as an assay for D-glucose 6-phosphate-1L-myoinositol 1-phosphate cyclase. Biochem J. 1970 Sep;119(2):183–186. doi: 10.1042/bj1190183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benjamins J. A., Agranoff B. W. Distribution and properties of CDP-diglyceride:inositol transferase from brain. J Neurochem. 1969 Apr;16(4):513–527. doi: 10.1111/j.1471-4159.1969.tb06850.x. [DOI] [PubMed] [Google Scholar]
  3. Burton L. E., Wells W. W. Studies on the developmental pattern of the enzymes converting glucose 6-phosphate to myo-inositol in the rat. Dev Biol. 1974 Mar;37(1):35–42. doi: 10.1016/0012-1606(74)90167-5. [DOI] [PubMed] [Google Scholar]
  4. Burton L. E., Wells W. W. Studies on the effect of 5-thio-D-glucose and 2-deoxy-D-glucose on myo-inositol metabolism. Arch Biochem Biophys. 1977 Jun;181(2):384–392. doi: 10.1016/0003-9861(77)90243-0. [DOI] [PubMed] [Google Scholar]
  5. CHARALAMPOUS F. C., LYRAS C. Biochemical studies on inositol. IV. Conversion of inositol to glucuronic acid by rat kidney extracts. J Biol Chem. 1957 Sep;228(1):1–13. [PubMed] [Google Scholar]
  6. Clements R. S., Jr, Reynertson R. Myoinositol metabolism in diabetes mellitus. Effect of insulin treatment. Diabetes. 1977 Mar;26(3):215–221. doi: 10.2337/diab.26.3.215. [DOI] [PubMed] [Google Scholar]
  7. Cooper P. H., Hawthorne J. N. Phosphatidylinositol kinase and diphosphoinositide kinase of rat kidney cortex: properties and subcellular localization. Biochem J. 1976 Oct 15;160(1):97–105. doi: 10.1042/bj1600097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAUGHADAY W. H., LARNER J., HOUGHTON E. The renal excretion of inositol by normal and diabetic rats. J Clin Invest. 1954 Aug;33(8):1075–1080. doi: 10.1172/JCI102979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DAUGHADAY W. H., LARNER J. The renal excretion of inositol in normal and diabetic human beings. J Clin Invest. 1954 Mar;33(3):326–332. doi: 10.1172/JCI102901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ELIASSON S. G. NERVE CONDUCTION CHANGES IN EXPERIMENTAL DIABETES. J Clin Invest. 1964 Dec;43:2353–2358. doi: 10.1172/JCI105109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eisenberg F., Jr D-myoinositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J Biol Chem. 1967 Apr 10;242(7):1375–1382. [PubMed] [Google Scholar]
  12. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Greene D. A., De Jesus P. V., Jr, Winegrad A. I. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest. 1975 Jun;55(6):1326–1336. doi: 10.1172/JCI108052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HENDRICKSON H. S., BALLOU C. E. ION EXCHANGE CHROMATOGRAPHY OF INTACT BRAIN PHOSPHOINOSITIDES ON DIETHYLAMINOETHYL CELLULOSE BY GRADIENT SALT ELUTION IN A MIXED SOLVENT SYSTEM. J Biol Chem. 1964 May;239:1369–1373. [PubMed] [Google Scholar]
  15. Hawthorne J. N., Pickard M. R. Phospholipids in synaptic function. J Neurochem. 1979 Jan;32(1):5–14. doi: 10.1111/j.1471-4159.1979.tb04503.x. [DOI] [PubMed] [Google Scholar]
  16. Hildebrand J., Joffroy A., Graff G., Coërs C. Neuromuscular changes with alloxan hyperglycemia. Electrophysiological, biochemical, and histological study in rats. Arch Neurol. 1968 Jun;18(6):633–641. doi: 10.1001/archneur.1968.00470360055005. [DOI] [PubMed] [Google Scholar]
  17. Kai M., Salway J. G., Hawthorne J. N. The diphosphoinositide kinase of rat brain. Biochem J. 1968 Feb;106(4):791–801. doi: 10.1042/bj1060791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lefebvre Y. A., White D. A., Hawthorne J. N. Diphosphoinositide metabolism in bovine adrenal medulla. Can J Biochem. 1976 Aug;54(8):746–753. doi: 10.1139/o76-106. [DOI] [PubMed] [Google Scholar]
  20. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  21. Naccarato W. F., Ray R. E., Wells W. W. Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch Biochem Biophys. 1974 Sep;164(1):194–201. doi: 10.1016/0003-9861(74)90022-8. [DOI] [PubMed] [Google Scholar]
  22. Nijjar M. S., Hawthorne J. N. Purification and properties of polyphosphoinositide phosphomonoesterase from rat brain. Biochim Biophys Acta. 1977 Feb 9;480(2):390–402. doi: 10.1016/0005-2744(77)90032-8. [DOI] [PubMed] [Google Scholar]
  23. Palmano K. P., Whiting P. H., Hawthorne J. N. Free and lipid myo-inositol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem J. 1977 Oct 1;167(1):229–235. doi: 10.1042/bj1670229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Salway J. G., Harwood J. L., Kai M., White G. L., Haworne J. N. Enzymes of phosphoinositide metabolism during rat brain development. J Neurochem. 1968 Mar;15(3):221–226. doi: 10.1111/j.1471-4159.1968.tb06200.x. [DOI] [PubMed] [Google Scholar]
  25. Sharma A. K., Thomas P. K., Baker R. W. Peripheral nerve abnormalities related to galactose administration in rats. J Neurol Neurosurg Psychiatry. 1976 Aug;39(8):794–802. doi: 10.1136/jnnp.39.8.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sharma A. K., Thomas P. K. Peripheral nerve structure and function in experimental diabetes. J Neurol Sci. 1974 Sep;23(1):1–15. doi: 10.1016/0022-510x(74)90136-1. [DOI] [PubMed] [Google Scholar]
  27. Stewart M. A., Sherman W. R., Kurien M. M., Moonsammy G. I., Wisgerhof M. Polyol accumulations in nervous tissue of rats with experimental diabetes and galactosaemia. J Neurochem. 1967 Nov;14(11):1057–1066. doi: 10.1111/j.1471-4159.1967.tb09516.x. [DOI] [PubMed] [Google Scholar]
  28. Tret'jak A. G., Limarenko I. M., Kossova G. V., Gulak P. V., Kozlov Y. P. Interrelation of phosphoinositide metabolism and ion transport in crab nerve fibres. J Neurochem. 1977 Jan;28(1):199–205. doi: 10.1111/j.1471-4159.1977.tb07727.x. [DOI] [PubMed] [Google Scholar]
  29. White G. L., Larrabee M. G. Phosphoinositides and other phospholipids in sympathetic ganglia and nerve trunks of rats. Effects of neuronal activity and inositol analogs ( - and -hexachlorocyclohexane (lindane)) on ( 32 P)-labelling, synaptic transmission and axonal conduction. J Neurochem. 1973 Mar;20(3):783–798. doi: 10.1111/j.1471-4159.1973.tb00039.x. [DOI] [PubMed] [Google Scholar]
  30. White G. L., Schellhase H. U., Hawthorne J. N. Phosphoinositide metabolism in rat superior cervical ganglion, vagus and phrenic nerve: effects of electrical stimulation and various blocking agents. J Neurochem. 1974 Jan;22(1):149–158. doi: 10.1111/j.1471-4159.1974.tb12191.x. [DOI] [PubMed] [Google Scholar]
  31. Winegrad A. I., Greene D. A. Diabetic polyneuropathy: the importance of insulin deficiency, hyperglycemia and alterations in myoinositol metabolism in its pathogenesis. N Engl J Med. 1976 Dec 16;295(25):1416–1421. doi: 10.1056/NEJM197612162952507. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES